- 博客(5)
- 收藏
- 关注
原创 SKNet:自适应感受野
SK conv作者通过SK conv(选择性卷积核)来聚合多个卷积核(ps:虽然说聚合的是卷积核,但是具体的操作是含input 即特征映射的)的信息。SK conv由3个部分组成:split,fuse和select,它们的作用分别是生成卷积核size不同的分支、聚合不同分支信息以获得选择权重的全局的表示、根据选择权重聚合不同size核的特征映射。split对于input:x∈RH′×W′×C′x\in R^{H'\times W'\times C'}x∈RH′×W′×C′,分别进行F˘、F^
2022-01-20 21:04:44 2332
原创 Python 易错易忘改正速食
list、tuple、dictListlist1.insert(1,'x'):在list某一位置添加元素>>> list1['a', 'b', 'c', 'd']>>> list1.insert(1,'x')>>> list1['a', 'x', 'b', 'c', 'd']del list1[2] 或 list1.pop([index=2]):删除某一元素,后面的元素向前进一位>>> list1['a', 'x'
2021-10-21 20:49:59 97
原创 VOC 与COCO 格式的相互转换
下面用到的 VOC 和 COCO 是我自己制作的小型数据集。代码中可能有许多不成熟的地方或者错误的地方,还请各位多多斧正!VOC转换成COCO重要工具:xml、json参照COCO的格式,我先把图片名称、目标类别列出来,初始化annotations,categories等。import xml.etree.ElementTree as ETimport jsonsets = ['z_00001', 'z_00002', 'z_00003', 'z_00004', 'z_00005']cla
2021-03-07 11:06:03 1199 2
原创 关于VOC与COCO数据集文件里的内容
本文的内容基于PASCAL VOC2012和COCO2014,若有不当之处,还请各位斧正。VOC下载VOC后打开,得到以下五个文件夹:JPEGImagesAnnotationsImageSetsSegmentationClassSegmentationObject1、JPEGImagesPASCAL VOC提供的所有的图片,其中包括训练图片,测试图片。2、Annotations存放xml格式的标签文件,每个xml对应JPEGImage中的一张图片。包含以下信息(#标注是我自己加的
2021-02-27 17:28:51 322
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人