3.归并排序
给定你一个长度为 n 的整数数列。
请你使用归并排序对这个数列按照从小到大进行排序。
并将排好序的数列按顺序输出。
输入格式
输入共两行,第一行包含整数 n。
第二行包含 n 个整数(所有整数均在 1∼109 范围内),表示整个数列。
输出格式
输出共一行,包含 n 个整数,表示排好序的数列。
数据范围
1≤n≤100000
输入样例:
5
3 1 2 4 5
输出样例:
1 2 3 4 5
#include<cstdio>
using namespace std;
const int N = 100010;
int a[N],tmp[N];
void merge_sort(int q[], int l, int r)
{
if(l >= r) return ; //判断没有元素或者只有1个元素的时候,返回函数调用处,释放空间
int mid = l + r >> 1; //取中点
merge_sort( q, l, mid); //递归左边
merge_sort( q, mid + 1, r); //递归右边
int k = 0, i = l, j = mid + 1;
while(i <= mid && j <= r) //排序的过程
if(q[i] <= q[j]) tmp[k ++] = q[i ++];
else tmp[k ++] = q[j ++];
while(i <= mid) tmp[k ++] = q[i ++];
while(j <= r) tmp[k ++] = q[j ++];
for(int i = l, j = 0;i <= r ;i ++) q[i] = tmp[j ++]; //将已排好序的序列覆盖掉未排序的序列
}
int main()
{
int n;
scanf("%d",&n);
for(int i = 0; i < n; i ++) scanf("%d",&a[i]);
merge_sort( a, 0, n-1);
for(int i = 0; i < n; i ++) printf("%d ",a[i]);
return 0;
}
//
//
3.1.运用归并排序计算出数列中逆序对的数量
给定一个长度为 n 的整数数列,请你计算数列中的逆序对的数量。
逆序对的定义如下:对于数列的第 i 个和第 j 个元素,如果满足 i<j 且 a[i]>a[j],则其为一个逆序对;否则不是。
输入格式
第一行包含整数 n,表示数列的长度。
第二行包含 n 个整数,表示整个数列。
输出格式
输出一个整数,表示逆序对的个数。
数据范围
1≤n≤100000
输入样例:
6
2 3 4 5 6 1
输出样例:
5
#include<cstdio>
using namespace std;
const int N = 100010;
typedef long long LL;
int q[N], tmp[N];
LL merge_sort(int q[], int l, int r)
{
if(l >= r) return 0;
int mid = l + r >> 1;
LL cnt = merge_sort( q, l, mid) + merge_sort( q, mid + 1, r);//逆序对的数量等于左边的逆序对的数量+右边的逆序对的数量+分别在左右两边构成的逆序对的数量
int k = 0, i = l , j = mid + 1;
while( i <= mid && j <= r)
if(q[i] <= q[j]) tmp[k ++] = q[i ++];
else //当q[i] > q[j]时,l - i + 1便是左边区间[ l, mid]可以与q[j]组成逆序对的数量
{
tmp[k ++] = q[j ++];
cnt += mid - i + 1;
}
while( i <= mid) tmp[k ++] = q[i ++];
while( j <= r) tmp[k ++] = q[j ++];
for(int i = l, j = 0; i <= r; i ++, j ++) q[i] = tmp[j];
return cnt;
}
int main()
{
int n;
scanf("%d",&n);
for(int i = 0; i < n; i ++) scanf("%d", &q[i]);
printf("%lld", merge_sort( q, 0, n - 1));
return 0;
}