【题目描述】
一个正整数一般可以分为几个互不相同的自然数的和,如
3
=
1
+
2
3=1+2
3=1+2,
4
=
1
+
3
4=1+3
4=1+3,
5
=
1
+
4
=
2
+
3
5=1+4=2+3
5=1+4=2+3,
6
=
1
+
5
=
2
+
4
6=1+5=2+4
6=1+5=2+4。
现在你的任务是将指定的正整数
n
n
n分解成若干个互不相同的自然数的和,且使这些自然数的乘积最大。
【输入格式】
只一个正整数
n
n
n,
(
3
≤
n
≤
10000
)
(3 \leq n \leq 10000)
(3≤n≤10000)。
【输出格式】
第一行是分解方案,相邻的数之间用一个空格分开,并且按由小到大的顺序。
第二行是最大的乘积。
【输入样例】
10
【输出样例】
2 3 5
30
【分析】
以 8 8 8和 10 10 10为例,若 1 1 1作因数,则显然乘积不会最大。把 x x x分拆成若干个互不相等的自然数的和,因数个数越多,乘积越大。为了使因数个数尽可能地多,我们把 x x x分成 2 + 3 ⋯ + n 2+3\dots +n 2+3⋯+n直到和大于等于 x x x,具体的贪心思路如下:
- 若和比 x x x大 1 1 1,例如 8 8 8分解为 2 + 3 + 4 = 9 2+3+4=9 2+3+4=9,则因数个数至少减少 1 1 1个,为了使乘积最大,应去掉最小的 2 2 2,并将最后一个数(最大的数)加上 1 1 1,即变为 3 + 5 = 8 3+5=8 3+5=8,此时乘积最大;
- 若和比 x x x大 k ( k ≠ 1 ) k(k≠1) k(k=1),则去掉等于 k k k的那个数,便可使乘积最大,例如 10 10 10分解为 2 + 3 + 4 + 5 = 14 2+3+4+5=14 2+3+4+5=14,去掉 14 − 10 = 4 14-10=4 14−10=4,即变为 2 + 3 + 5 = 10 2+3+5=10 2+3+5=10,此时乘积最大;
分解出最优的因数后进行高精度乘法求出答案即可。
【代码】
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <vector>
#include <set>
using namespace std;
set<int> st;//分解出来的数
vector<int> res = { 1 };//乘积结果
int n;
//高精乘
void mul(vector<int>& A, int b)
{
vector<int> res;
int t = 0;
for (int i = 0; i < A.size() || t; i++)
{
if (i < A.size()) t += A[i] * b;
res.push_back(t % 10);
t /= 10;
}
while (res.size() > 1 && !res.back()) res.pop_back();
A = res;
}
int main()
{
cin >> n;
for (int i = 2; ; i++)
{
if (n - i >= 0) n -= i, st.insert(i);
else if (n - i == -1)//加上i后和比x大1的情况
{
st.insert(i + 1);//由于待插入的i为最大数,因此插入i+1即可
st.erase(2);//把2去掉
break;
}
else//加上i后和比x大k的情况
{
st.insert(i);
st.erase(abs(n - i));//把k去掉
break;
}
}
for (auto x : st) mul(res, x), cout << x << ' ';
puts("");
for (int i = res.size() - 1; i >= 0; i--) cout << res[i];
return 0;
}