洛谷P1249 最大乘积(贪心,高精度)

【题目描述】
一个正整数一般可以分为几个互不相同的自然数的和,如 3 = 1 + 2 3=1+2 3=1+2 4 = 1 + 3 4=1+3 4=1+3 5 = 1 + 4 = 2 + 3 5=1+4=2+3 5=1+4=2+3 6 = 1 + 5 = 2 + 4 6=1+5=2+4 6=1+5=2+4
现在你的任务是将指定的正整数 n n n分解成若干个互不相同的自然数的和,且使这些自然数的乘积最大。

【输入格式】
只一个正整数 n n n ( 3 ≤ n ≤ 10000 ) (3 \leq n \leq 10000) (3n10000)

【输出格式】
第一行是分解方案,相邻的数之间用一个空格分开,并且按由小到大的顺序。
第二行是最大的乘积。

【输入样例】

10

【输出样例】

2 3 5
30

【分析】


8 8 8 10 10 10为例,若 1 1 1作因数,则显然乘积不会最大。把 x x x分拆成若干个互不相等的自然数的和,因数个数越多,乘积越大。为了使因数个数尽可能地多,我们把 x x x分成 2 + 3 ⋯ + n 2+3\dots +n 2+3+n直到和大于等于 x x x,具体的贪心思路如下:

  • 若和比 x x x 1 1 1,例如 8 8 8分解为 2 + 3 + 4 = 9 2+3+4=9 2+3+4=9,则因数个数至少减少 1 1 1个,为了使乘积最大,应去掉最小的 2 2 2,并将最后一个数(最大的数)加上 1 1 1,即变为 3 + 5 = 8 3+5=8 3+5=8,此时乘积最大;
  • 若和比 x x x k ( k ≠ 1 ) k(k≠1) k(k=1),则去掉等于 k k k的那个数,便可使乘积最大,例如 10 10 10分解为 2 + 3 + 4 + 5 = 14 2+3+4+5=14 2+3+4+5=14,去掉 14 − 10 = 4 14-10=4 1410=4,即变为 2 + 3 + 5 = 10 2+3+5=10 2+3+5=10,此时乘积最大;

分解出最优的因数后进行高精度乘法求出答案即可。


【代码】

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <vector>
#include <set>
using namespace std;

set<int> st;//分解出来的数
vector<int> res = { 1 };//乘积结果
int n;

//高精乘
void mul(vector<int>& A, int b)
{
	vector<int> res;
	int t = 0;
	for (int i = 0; i < A.size() || t; i++)
	{
		if (i < A.size()) t += A[i] * b;
		res.push_back(t % 10);
		t /= 10;
	}
	while (res.size() > 1 && !res.back()) res.pop_back();
	A = res;
}

int main()
{
	cin >> n;
	for (int i = 2; ; i++)
	{
		if (n - i >= 0) n -= i, st.insert(i);
		else if (n - i == -1)//加上i后和比x大1的情况
		{
			st.insert(i + 1);//由于待插入的i为最大数,因此插入i+1即可
			st.erase(2);//把2去掉
			break;
		}
		else//加上i后和比x大k的情况
		{
			st.insert(i);
			st.erase(abs(n - i));//把k去掉
			break;
		}
	}
	for (auto x : st) mul(res, x), cout << x << ' ';
	puts("");
	for (int i = res.size() - 1; i >= 0; i--) cout << res[i];
	return 0;
}
### 关于 P1249 最大乘积问题的 C++ 解题思路 对于给定的一个正整数 `n` 和分割次数 `k`,目标是将 `n` 分割成 `k` 个部分使得这些部分的乘积最大化。这个问题可以通过动态规划来解决。 #### 动态规划的状态定义 设 `dp[i][j]` 表示前 `i` 位数字分成 `j` 段所能得到的最大乘积[^3]。 #### 初始化 - 对于只有一段的情况,即 `dp[i][1]` 就是从第1位到第i位组成的整个数值。 #### 状态转移方程 为了求解 `dp[i][j]` 的值,可以考虑最后一个切割位置 `p` (其中 `1 ≤ p < i`),则状态转移方程为: \[ dp[i][j]=\max(dp[p][j-1]*num(p+1,i)) \] 这里 `num(p+1,i)` 是指从第 `p+1` 到第 `i` 位所表示的子串对应的十进制数值。 #### 边界条件 当 `j=1` 或者 `i=j` 时,显然不需要进一步划分,因此可以直接赋初值;其他情况下通过上述公式计算得出结果。 下面是具体的代码实现: ```cpp #include<iostream> #include<string> using namespace std; const int MAX_N = 50; string s; long long f[MAX_N][MAX_N], num[MAX_N][MAX_N]; // 计算字符串s中从l到r之间的数字转换成long long型 void calc_num() { for (int l = 0; l < s.size(); ++l) for (int r = l; r < s.size(); ++r) { if (!l && !r) num[l][r] = s[l]-'0'; else num[l][r] = num[l][r-1]*10+s[r]-'0'; } } int main(){ int N, K; cin >> N >> K >> s; // 预处理每一段的数值 calc_num(); // 初始化边界情况 for(int i = 0; i<s.length();++i){ f[i+1][1]=num[0][i]; f[i+1][i+1]=f[i][i]*10+(s[i]-'0'); } // 填表过程 for(int j = 2;j<=K;++j)//枚举段数 for(int i = j;i<N;++i)//枚举终点 for(int k = j-1;k<i;++k)// 枚举上一次切分的位置 f[i][j]=max(f[i][j],f[k][j-1]*num[k][i]); cout << f[N-1][K]<<endl; } ``` 这段代码实现了基于动态规划的方法来寻找最优解,并且能够有效地处理高精度运算的需求。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柃歌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值