小样本学习演变历史

小样本学习在无法获取大量有标签数据的场景中显得尤为重要,如珍稀生物图片的识别。在无深度学习时期,研究进展缓慢,但2015年SiameseCNN的提出开启了深度学习时代,推动了小样本学习的快速发展。本文回顾了小样本学习的历史,重点讨论了生成模型和判别模型的发展,并探讨了人类与机器学习在小样本学习能力上的差异。
摘要由CSDN通过智能技术生成

作者记录方便查询

知识来源:
2020年小样本综述
完善中。。
由于在实际生活中,很多场景中很难收集充足的有标签样本,例如珍惜生物的图片,所以小样本学习是机器学习极具研究意义和挑战的一部分。
在样本中学习并且泛化的能力强弱是人类学习与机器学习很大的区别,人类常常能根据少量的数据对一项事物产生充足的认知,然而想要机器学习较好的学习一项事物并且实现对没见过的同类事物进行泛化,常常==通常需要大量的有标签数据。
小样本学习历史可以分成生成模型与判别模型两个部分。在2015年前,学者们在生成模型上进行了大量研究,然而在无深度学习时期(non-deep period),小样本学习方面的研究进度缓慢。
在2015年,G.Koch提出的Siamese CNN开启了小样本学习的新时代——深度学习时代,在这之后小样本学习方面的研究突飞猛进。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值