作者记录方便查询
知识来源:
2020年小样本综述
完善中。。
由于在实际生活中,很多场景中很难收集充足的有标签样本,例如珍惜生物的图片,所以小样本学习是机器学习极具研究意义和挑战的一部分。
在样本中学习并且泛化的能力强弱是人类学习与机器学习很大的区别,人类常常能根据少量的数据对一项事物产生充足的认知,然而想要机器学习较好的学习一项事物并且实现对没见过的同类事物进行泛化,常常==通常需要大量的有标签数据。
小样本学习历史可以分成生成模型与判别模型两个部分。在2015年前,学者们在生成模型上进行了大量研究,然而在无深度学习时期(non-deep period),小样本学习方面的研究进度缓慢。
在2015年,G.Koch提出的Siamese CNN开启了小样本学习的新时代——深度学习时代,在这之后小样本学习方面的研究突飞猛进。