自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1224)
  • 资源 (3)
  • 论坛 (1)
  • 收藏
  • 关注

转载 使用@Async异步注解导致该Bean在循环依赖时启动报BeanCurrentlyInCreationException异常的根本原因分析,以及提供解决方案【享学Spring】

前言今天在自己工程中使用@Async的时候,碰到了一个问题:Spring循环依赖(circular reference)问题。 或许刚说到这,有的小伙伴就会大惊失色了。Spring不是解决了循环依赖问题吗,它是支持循环依赖的呀?怎么会呢?不可否认,在这之前我也是这么坚信的,而且每次使用得也屡试不爽。倘若你目前也和我有一样坚挺的想法,那么相信本文能让你大有收货~~。不得不提,关于@Async的使用姿势,请参阅: 【小家Spring】Spring异步处理@Async的使用以及原理、源码分析(@Ena

2020-11-18 11:38:44 20

转载 字节跳动Deep Retrieval召回模型笔记

今天讲讲字节的一个召回的文章:《Deep Retrieval: An End-to-End Learnable Structure Model for Large-Scale Recommendations》(公众号后台回复【dr】可下载)召回因为候选集个数多,一般用MIPS的思路做,这样的问题在于:1、向量最大内积模型表达 能力有限,缺少特征交互;2、ANN的时候会通过聚类减小候选集(IVFAQ),但是这个聚类建立索引的过程,跟召回模型的训练是分开的,效果肯定不好;可能存在召回模型学好了,但是

2020-11-18 10:00:44 119

转载 spring同类调用事务不生效-原因及三种解决方式

spring提供的声明式事务注解@Transactional,极大的方便了开发者管理事务,无需手动编写开启、提交、回滚事务的代码。但是也带来了一些隐患,如果注解使用不当,可能导致事务不生效,最终导致脏数据也入库。如果在同一个类直接调用事务方法,就会导致事务不生效,示例如下public class StudentServiceImpl implements StudentService { @Autowired private StudentMapper studentMa.

2020-11-17 21:01:12 56

转载 Java序列化接口Serializable接口的作用总结

一.Java序列化接口Serializable的作用:一个对象有对应的一些属性,把这个对象保存在硬盘上的过程叫做”持久化”. 对象的默认序列化机制写入的内容是:对象的类,类签名,以及非瞬态和非静态字段的值。(因为静态static的东西在方法区.)序列化能把堆内存中的对象的生命周期延长,做持久化操作.当下次再需要这个对象的时候,我们不用new了,直接从硬盘中读取就可以了.(存储到硬盘是一个文件,不需要我们去解析,如果用记事本打开解析会出现乱码,解析要用特定的方式,不用我们管. 我们只需要读取)..

2020-11-13 19:55:49 46

转载 数据仓库、数据湖、流批一体

作者:蒋晓伟(量仔) 阿里云研究员金晓军(仙隐)阿里云高级技术专家摘要:数据仓库,数据湖,包括Flink社区提的流批一体,它们到底能解决什么问题?今天将由阿里云研究员从解决业务问题出发,将问题抽丝剥茧,从技术维度娓娓道来:为什么你需要数据湖或者数据仓库解决方案?它的核心难点与核心问题在哪?如果想稳定落地,系统设计该怎么做?一、业务背景1.1 典型实时业务场景首先我们来看一个典型的实时业务场景,这个场景也是绝大部分实时计算用户的业务场景,整个链路也是一个典型的流计算架构:把用户的行为.

2020-11-13 15:26:36 51

转载 AKKA介绍

akka简介 一开始想接触到akka,是在看一些并发相关资料的时候,查了下akka的官方介绍,介绍如下:Akka是一个开发库和运行环境,可以用于构建高并发、分布式、可容错、事件驱动的基于JVM的应用,使构建高并发的分布式应用更加容易。听到高并发和分布式这两个关键字就已经足够让人想去探索究竟是什么样的框架,当深入查看各种资料后,发现当前大数据领域火热的spark、flink底层的分布式计算和通信实现都是akka,是不是很意外。虽然它是由scala编写的,但也同时提供java api接口,所以使用j..

2020-11-11 16:08:39 23

转载 单元测试难?来试试这些套路

阿里妹导读:测试不应该是一门很高大尚的技术,应该是我们技术人的基本功。但现在好像慢慢地,单元测试已经脱离了基本功的范畴。笔者曾经在不同团队中推过单元测试,要求过覆盖率,但发现实施下去很难。后来在不停地刻意练习后,发现阻碍写UT的只是笔者的心魔,并不是时间和项目的问题。在经过一些项目的实践后,也是有了一些自己的理解和实践,希望和大家分享一下,和大家探讨下如何克服“单元测试”的心魔。文末福利:开发者成长计划,最强助力!内功前人们在单元测试方面的研究很多,有很多的方法论,我们可以拿来...

2020-11-03 20:07:14 58

转载 推荐算法工程师成长2:排序模块

开一个系列,主题是推荐算法工程师成长路径。目标是希望填补书本上的机器学习理论与业界推荐算法工程师知识体系上的gap,了解一些业界模块的通用玩法。目标群体是针对以下用户:有一些代码和机器学习基础,但是没有从业经验的在校学生 刚刚入坑的算法工程师,可以对照一起探讨 对推荐系统感兴趣的其他朋友欢迎关注一起探讨,也欢迎关注我的微信公众号: 峰池 (fengchitalk)。前两篇,我们分别讲了推荐算法所需要的一些工程基础,和在推荐算法的召回模块的一些通用解法:峰池:推荐算法工程师成长路径0——工程

2020-10-30 20:38:31 112

转载 腾讯 VS 阿里 VS 携程消息中间件设计方案及思路

目标:可靠性(保证消息不丢失)、异步、解耦(无需同时在线、不需要知道对方是谁)。数据的存储级别:内存中的数据(断电丢数据)=》持久化磁盘(磁盘损坏)=》冗余备份(一致性问题)业界MQ设计方案如下:1.阿里Notify架构特点:Notify之间不互相通讯。 支持水平扩展。 客户端通过Config Server获得Notify地址列表。 客户端自动感知Notify的增加或减少。 发布者、消费者、Notify Server都支持集群。 消息根据不同的安全级别选择存放到不同的地方(如

2020-10-29 16:11:53 65 1

转载 10种轻量级人脸检测算法大PK

几个月前,AIZOO曾经盘点过最强六大开源轻量级人脸检测项目分析 | 附打包下载,nihate同学将它丰富到10种算法,并用Python.对他们进行了汇总整理,以及效果的对比。Github链接:https://github.com/hpc203/10kinds-light-face-detector-align-recognition 可以阅读原文跳转。原文:https://blog.csdn.net/nihate/article/details/108798831最近在微信公众号 AIZO..

2020-10-28 09:51:53 101

转载 Facebook经典CTR预估模型

这里是「王喆的机器学习笔记」的第九篇文章,今天我们重读一篇经典的CTR预估领域的论文,Facebook在2014发表的“Practical Lessons from Predicting Clicks on Ads at Facebook”。在这篇文章中,Facebook提出了经典的GBDT(Gradient Boosting Decision Trees)+LR(Logistics Regression)的CTR模型结构,可以说开启了特征工程模型化、自动化的新阶段。此外其在五年前就采用的online

2020-10-28 09:45:51 51

转载 系统设计:Google三剑客

补充材料:三剑客:http://blog.csdn.net/koder2009/article/details/3964878http://blog.csdn.net/koder2009/article/details/3985329http://blog.csdn.net/koder2009/article/details/3991938http://blog.csdn.net/wangxiaoqin00007/article/details/7091686http://www.m

2020-10-28 09:39:59 50

转载 精益软件过程中七大浪费的应对之道

精益生产原本是来自于制造业的一个理念,为丰田汽车首创。之后随着一代代丰田人的丰富和完善,逐渐成为丰田汽车商场制胜的一大法宝。之后随着精益生产的理念传到美国,逐渐的发展为一套完整的价值体系。与此同时,在软件工程领域,敏捷也逐渐发展成为一套完整的价值观和方法论的体系。直到有一天,这两者被同时摆在桌子上的时候,我们才发现,这两者虽然行业背景不同,关注点也不尽相同,给出的解决方法也不一致,但是在最基本的价值观上却可以做到相互融合。由此,精益生产的理念也被引入了软件工程领域,并逐渐形成Lean-Agile的项目管

2020-10-23 14:25:21 37

转载 DCN-M:Google提出改进版DCN,用于大规模排序系统的特征交叉学习(附代码)

“本文结合DeepCTR-Torch中的代码实现,介绍了DCN的改进版——DCN-M。该模型能更有效地学习特征交叉,并通过低秩矩阵分解对参数矩阵进行降维,降低计算成本。受MOE结构启发,作者还在多个子空间中建模特征交叉。实验表明,传统的基于ReLU的神经网络在学习高阶特征交叉时效率较低;DCN-M能够在保证效率较高的同时,取得优于SOTA方法的效果。”本文介绍的论文是《DCN-M: Improved Deep & Cross Network for Feature Cross Learning.

2020-10-21 09:16:04 112

转载 京东订单系统高可用架构及演变过程

京东到家是达达集团旗下中国最大的本地即时零售平台之一,目标就是实现一个小时配送到家的业务。一直到 2019 年京东到家覆盖 700 个县区市,合作门店近 10 万家,服务数千万消费者。随着订单量的增长、业务复杂度的提升,订单系统也在不断演变进化,从早期一个订单业务模块到现在分布式可扩展的高并发、高性能、高可用订单系统。整个发展过程中,订单系统经历了几个明显的阶段,通过不同的技术优化方案解决业务上遇到的问题。下面我将为大家逐一介绍我们遇到了哪些问题及如何解决,主要分为以下三部分: 京东到家系统架构

2020-10-20 21:07:31 277

转载 电商系统之订单系统

电商系统之订单系统1 概述订单系统作为电商系统的“纽带”贯穿了整个电商系统的关键流程。其他模块都是围绕订单系统进行构建的。订单系统的演变也是随着电商平台的业务变化而逐渐演变进化着,接下来就和大家一起来解析电商平台的“生命纽带”。订单系统的作用是:管理订单类型、订单状态,收集关于商品、优惠、用户、收货信息、支付信息等一系列的订单实时数据,进行库存更新、订单下发等一系列动作。订单系统业务的基本模型涉及用户、商品(库存)、订单、付款,订单基本流程是下订单——>减库存,这两...

2020-10-20 16:46:38 75

转载 动态网络表征学习在推荐领域的创新与实践

导读:在现实生活中,用户对于一件事物的关注度即关系图往往是会随着时间而改变的。按照静态图的建模方法将不能显示地建模用户在时序上的兴趣变化。动态网络表征学习不仅能学习到当前网络的结构信息,而且也能学习到网络在时间上的变化,但是目前主要还是针对动态同构网络,本文在此基础上提出了基于层次化注意力机制的动态图表征算法,是推荐底层算法模型上的一次突破。01背景介绍目前大多数 Graph Embedding 的方法如 node2vec、GCN、GraphSAGE 和 GAT 等主要是针对静态图模型的方法,也

2020-10-19 17:48:23 129

转载 100篇精选算法技术文章收藏

目前按照文章的主题大致分成了下面几个模块,每个模块内都是按照发表时间由近到远排列: 排序&CXR预估 召回匹配 用户画像&特征工程 推荐搜索综合 计算广告 大数据 图算法 NLP&CV 求职面试 由于微信的文章不方便经常更新,我把这份目录也同步在了github上,并且支持主题跳转。对于想要实时获得最新更新的同学,可以关注一下https://github.com/shenweichen/AlgoN

2020-10-19 09:42:01 162

转载 解读电商搜索

“本文主要结合作者的一些电商算法经验,以手淘搜索为例展开,介绍产品和诉求层面以及如何使用搜索入口来做用户引导,后续文章会结合相关算法深入展开。”作者:姚凯飞,Club Factory 推荐算法负责人硕士毕业于上海交通大学,前阿里推荐算法工程师,多年电商及视频推荐经验,目前在出海电商Club Factory负责推荐算法工作。出品:DataFunTalk一. 概述一个产品的搜索功能,是用户快速触达所需信息的通道,起到了引导用户走向的重要作用;优秀的产品必然有成熟、体验良好的搜索功能。..

2020-10-13 20:06:55 254

转载 分类模型与排序模型在推荐系统中的异同分析

出品社区:DataFunTalk 前言 推荐系统是驱动内容分发的引擎,而个性化则是推荐系统的核心思想。分类模型和排序模型是业界常用的两种个性化建模方式。本文探讨两种方法的异同点,总结如下: 分类模型回答的是用户喜不喜欢这个物品,而排序模型回答的用户更喜欢哪一个; 在对事件发生的假设上,分类模型认为个样本之间相互独立且服从相同的分布,排序模型认为同组内部的样本是有关联关系和可以相互比较的; 从Bayesian 的观点来看,分类模型刻画的是<user,ite...

2020-10-13 17:10:26 46

转载 美团外卖离线数仓建设实践

导读: 美团外卖数据仓库主要是收集各种用户终端业务、行为数据,通过统一口径加工处理,通过多种数据服务支撑主题报表、数据分析等多种方式的应用。数据组作为数据基础部门,支持用户端、商家端、销售、广告、算法等各个团队的数据需求。本文主要介绍美团外卖离线数仓的历史发展历程,在发展过程中碰到的痛点问题,以及针对痛点做的一系列优化解决方案。01 业务介绍首先介绍下美团外卖的业务场景, 核心交易链路为:用户可以通过美团的各种用户终端(包括美团外卖的 APP 或者美团 APP、QQ/ 微信等)下单,然后商家接单

2020-10-13 17:02:26 207

转载 InnoDB索引原理详解

摘要:  本篇介绍下Mysql的InnoDB索引相关知识,从各种树到索引原理到存储的细节。  InnoDB是Mysql的默认存储引擎(Mysql5.5.5之前是MyISAM,文档)。本着高效学习的目的,本篇以介绍InnoDB为主,少量涉及MyISAM作为对比。  这篇文章是我在学习过程中总结完成的,内容主要来自书本和博客(参考文献会给出),过程中加入了一些自己的理解,描述不准确的地方烦请指出。  1 各种树形结构  本来不打算从二叉搜索树开始,因为网上已经有太多相关文章,但是考虑到清晰的

2020-10-13 09:49:33 23

转载 为什么使用了索引,查询还是慢?

经常有同学问我,我的一个SQL语句使用了索引,为什么还是会进入到慢查询之中呢?今天我们就从这个问题开始来聊一聊索引和慢查询。另外插入一个题外话,个人认为团队要合理的使用ORM,可以参考 ORM的权衡和抉择。合理利用的是ORM在面向对象和写操作方面的优势,避免联合查询上可能产生的坑(当然如果你的Linq查询能力很强另当别论),因为ORM屏蔽了太多的DB底层的知识内容,对程序员不是件好事,对性能有极致追求,但是ORM理解不透彻的团队更加要谨慎。案例剖析 言归正传,为了实验,我创建了如下表:..

2020-10-12 09:59:11 40

转载 图解 ElasticSearch 搜索原理

摘要先自上而下,后自底向上的介绍ElasticSearch的底层工作原理,试图回答以下问题: 为什么我的搜索 *foo-bar*无法匹配foo-bar? 为什么增加更多的文件会压缩索引(Index)? 为什么ElasticSearch占用很多内存? 版本elasticsearch版本: elasticsearch-2.2.0内容图解ElasticSearch云上的集群集群里的盒子云里面的每个白色正方形的盒子代表一个节点——Node。...

2020-10-10 09:54:19 38

转载 图网络中的社群及社群发现算法

导读:本文来自作者的学习笔记。主要讲解Graph中社群的概念,然后介绍了一种简单的社群发现算法Louvain Algorithm,最后提供可重叠的社群发现,提出BigCLAM算法,用来识别节点从属关系。01Granovetter's theory马克·格兰诺维特(Mark Granovetter,1943年10月20日-),美国社会学家,斯坦福大学教授。格兰诺维特是论文被引用最多的学者之一,根据 Web of Science 的数据,社会学论文被引数排名第一和第三的文章皆出自格兰诺维特之手。格兰

2020-10-10 09:12:21 807

转载 深度剖析 synchronized

线程安全是并发编程中关注的重点,应该注意到的是,造成线程安全问题的主要原因有两点,一是存在共享数据(也称临界资源),二是存在多条线程共同操作共享数据。因此为了解决这个问题,Java 引入了互斥锁的概念,对共享数据变量在访问前需要获取锁,然后才能对其进行修改,修改完后再释放锁,没有获取到锁的线程只能等待,直到当前线程处理完毕释放该锁。这样能够保证在同一时刻只有一个线程能够对共享数据进行操作,保证了多线程下的线程安全。在 Java 中,关键字 synchronized 可以保证在同一个时刻,只有一个线程可以执.

2020-10-10 09:11:01 23

转载 MOBIUS:百度凤巢新一代广告召回系统

导读:本文主要介绍了百度搜索广告系统 ( 凤巢 ) 的新一代多目标召回系统架构,相比于经典召回排序两段架构,能在保证召回相关性的同时引入诸如CPM等排序层的优化目标,从而提升整体系统的效率。01创新点1. 在召回层保证相关性的同时引入了CPM等业务指标作为召回的依据。2. 将以往的CTR预估模型融合到召回层中,提出一种全新的多目标商业召回系统架构。02论文背景在大部分公司的商业广告系统架构中,都会采用经典的“漏斗”结构,即召回——粗排——精排——重排序等模块,在现有的召回模块中,

2020-10-10 09:09:32 76

转载 Redis 6.0 如何实现大幅度的性能提升?

导读: Redis可以轻松支撑100k+ QPS,离不开基于Reactor模型的I/O Multiplexing,In-memory操作,以及单线程执行命令避免竞态消耗。尽管性能已经能满足大多数应用场景,但是如何继续在迭代中继续优化,以及在多核时代利用上多线程的优势,也是大家关注的重点。我们知道性能优化在系统资源层面可以从I/O以及CPU上入手,对于Redis而言,其功能不过度依赖CPU计算能力,即不是CPU密集型的应用,而In-memory的操作也绕开了通常会拖慢性能的磁盘I/O,所以在Redis 6..

2020-10-10 09:07:25 60

转载 多样性算法在58部落的实践和思考

导读:本文在明确“推荐系统个体多样性优化”主题后,由整体架构出发,清楚阐述了在召回层、规则层、多样性层的优化细节。在MMR和DPP算法部分既有原理也有实践,最后用图表方式展示出了效果对比,并且结合自身业务特点做了针对性的距离设计。01背景在推荐系统中,衡量系统好坏的指标,除了相关性之外,多样性也是重要的指标之一。但多样性和相关性之间往往存在一些矛盾的地方,本文从业务指标的角度,探讨了多样性和相关性之间如何权衡的思想方法,介绍了多样性算法的落地实践方案,最终达到了通过多样性手段提升业务指标的目的。

2020-10-09 17:00:56 93

转载 Embedding在网易严选搜索推荐中的应用

导读:向量化在业界的运用越来越广,近期也有许多文章分享过相关的主题。严选于18年下半年开始探索向量化在搜索推荐场景中的运用,从最开始基于商品召回用户的任务到后续的搜索召回、搜索个性化排序、搜索底纹、搜索发现词、搜索建议词、跨类目推荐、推荐召回、多兴趣召回、通用排序、端智能重排等等,我们不断拓宽向量体系在严选的运用,在这过程中一点点迭代与沉淀。本文将从模型算法和落地运用等角度做简要介绍,希望能给读者一些启发。01向量体系上图是对严选向量体系的一个概览。引言中说了那么多运用场景,第一眼看会觉得有

2020-10-09 16:31:06 120

转载 阿里强化学习重排实践

导读:AliExpress 搜索重排项目在去年6 月份时全量发布了第一个 fined tuned的 DNN 版重排模型,本次的工作作为上一版本的升级,在日常、大促时的表现均有显著优势。本文将深入浅出强化学习框架重排实践,并引出几个潜在的提升空间。01商品排序中的重排商品排序的目的,很大一部分是为了让高效的商品获得更好的展示机会,匹配用户的需求。一种主流的思路是,商品对于用户的某次请求来说,是有好坏之分的。而从展示的位置的角度来看,越靠前的商品越能够获得曝光机会上的优势。于是,通过模型对商品打..

2020-10-09 16:25:26 148

转载 全新的深度模型在推荐系统中的应用

导读:如今,在电子商务、物联网等领域,推荐系统扮演着越来越重要的地位。如何根据用户的历史行为和项目的特征信息,判断用户对商品是否感兴趣成了重要的研究问题之一。日前,第四范式提出了全新的深度神经网络表数据分类模型——深度稀疏网络 ( Deep Sparse Network,又名NON ),被机器学习顶会SIGIR 2020收录。本次分享将带你全面了解NON模型的提出动机、整体结构、局部特点以及突出贡献。01背景介绍首先对推荐系统和深度学习进行简单的介绍。什么是推荐系统?什么是深度学习?1. R

2020-10-09 11:59:09 79

转载 基于 Flink+Iceberg 构建企业级实时数据湖 | 附 PPT 下载

扫描下面二维码,回复Flink可获取该 PPT...

2020-10-09 11:35:06 79

转载 Hbase 学习笔记

HBASE由Google的Bigtable设计而来的面向列族的存储的非关系数据库,主要偏向适合数据分析。优点和缺点列式数据库优点,列式数据库会把相同列的数据都放在一块即列为单位存储。当我们查询某一列的时候只需要调出相应的块即可,这样还可以减少很多I/O。高压缩比如果数据元素间的相似性很高的话可以进行大幅度的压缩,相似度越高压缩比越大。即节约了空间又减少了I/O,从而提高性能。高并发,极易扩展Hbase的极易扩展主要体现在两个方面,一个是基于上层处理能力(Region...

2020-09-10 15:00:47 35

转载 多业务融合推荐策略实践与思考

导读:58同城作为分类信息网站,服务覆盖多个领域,如房屋租售、招聘求职、二手买卖等等,不同的业务有不同的特点,这使得多业务融合推荐成为一大挑战。如何准确挖掘用户的需求?如何平衡各业务之间的流量分配?如何增加多样性提升用户体验?这些问题将在本次分享中解答。01推荐系统整体架构58的推荐系统架构主要分成三部分: 对外接口层:负责对外输入输出、展示功能,服务于首页、详情页等等场景; 业务逻辑层:包含推荐系统的主要模块,如兴趣服务、召回模块、排序模块等; 数据算法层:负责底

2020-09-03 17:48:00 161

转载 如何解决微服务的数据一致性分发问题

介绍系统架构微服务化以后,根据微服务独立数据源的思想,每个微服务一般具有各自独立的数据源,但是不同微服务之间难免需要通过数据分发来共享一些数据,这个就是微服务的数据分发问题。Netflix/Airbnb等一线互联网公司的实践[参考附录1/2/3]表明,数据一致性分发能力,是构建松散耦合、可扩展和高性能的微服务架构的基础。本文解释分布式微服务中的数据一致性分发问题,应用场景,并给出常见的解决方法。本文主要面向互联网分布式系统架构师和研发经理。为啥要分发数据?场景?我们还是要从具体业务场景出

2020-09-02 20:09:35 182

转载 机器学习模型在携程海外酒店推荐场景中的应用

导读互联网企业的核心需求是“增长”,移动互联时代下的在线旅游业也不例外。随着大数据、云计算和人工智能等技术的不断进步,通过算法和模型来实现增长已成为核心。近年来推荐系统迅速崛起,主要解决在信息过载的情况下,帮助用户高效获取感兴趣的信息,同时帮助企业最大限度的吸引用户、留存用户、增加用户黏性、提高用户转化率。因此个性化的推荐服务对于在线旅游业也变得非常重要,通过推荐能够将用户从众多的旅行选择中解放出来,指导用户快速找到感兴趣的项目,大大简化用户的旅行计划和购买。在线旅游服务...

2020-08-26 20:52:18 215

转载 超越用户embedding矩阵:用哈希对大型用户建模

“本文介绍了一种新的用户偏好表示方法PreHash ,同时考虑到了大规模数据和冷启动用户。该方法可以在很多推荐算法中替代其用户embedding矩阵。若干SOTA算法上的实验结果显示该算法不仅取得了更好的效果,还减少了模型的参数。”作者:胖鱼,北京交大研究生在读,方向为机器学习,推荐系统。「0摘要:」论文标题:Beyond User Embedding Matrix: Learning to Hash for Modeling Large-Scale Users in Recommendat..

2020-08-26 17:48:17 131

转载 ClickHouse 在字节跳动广告场景的应用

上一篇 ClickHouse 文章:ClickHouse在用户增长分析场景的应用分享嘉宾:董一峰,2016年加入字节跳动OLAP团队,一直从事大数据查询引擎的开发和推广工作,先后负责Hive,Spark,Durid,ClickHouse等大数据引擎,目前主要聚焦于ClickHouse执行层相关的研发业务背景:大家都知道,广告对于很多互联公司来说,都是主要的收入,当然字节跳动也是如此。目前clickhouse在字节跳动在线服务和离线服务都有所涉及。下面来给大家分享一下clickho...

2020-08-08 16:01:10 300

原创 Elasticsearch 常见的 8 种错误及最佳实践

Elasticsearch 社区有大量关于 Elasticsearch 错误和异常的问题。深挖这些错误背后的原因,把常见的错误积累为自己的实战经验甚至是工具,不仅可以节省我们的开发和运维时间,而且可以帮助确保 Elasticsearch 集群的长期健康运行。常见的异常、原因和常规最佳实践拆解如下,这些最佳实践可以帮助我们更有效地识别、最小化定位和处理异常问题。1、 Mapper_parsing_exceptionElasticsearch 依靠映射(Mapping)定义的数据类型处理数据。

2020-08-05 11:28:57 264

Z-Stack API

ZStack 2006版本Api,中文版,

2011-03-30

《Z-Stack API 接口》中文版

ZigBee协议栈编程接口(API),中文版。

2010-04-04

hadoop-windows

Hadoop 2.7. 6在Windows7下单机部署时的补丁文件包,解决Hadoop在Windows下的安装问题

2018-08-14

hellozhxy的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除