排序:
默认
按更新时间
按访问量

TCP三次握手原理

问题描述 场景:Java 的 Client 和 Server,使用 Socket 通信。Server 使用 NIO。 问题: 间歇性出现 Client 向 Server 建立连接三次握手已经完成,但 Server 的 Selector 没有响应到该连接。 出问题的时间点,会同时有很多连接出...

2018-10-17 13:40:46

阅读数:4

评论数:0

技术 KPI 的量化

技术 KPI 的量化 提升技术氛围,打造工程师文化不能仅停留在口头上,可搭配一定的强制手段,比如和技术人员的利益绑定。这种绑定就需要我们能对技术贡献进行一个相对公平的分解和量化。 技术 KPI 基于此,我将技术人员的 KPI 分解为业务贡献、技术贡献和团队贡献三个大的部分。 其详细内容如下...

2018-10-17 09:46:46

阅读数:1

评论数:0

服务器TIME_WAIT和CLOSE_WAIT详解和解决办法

来自:http://blog.csdn.net/shootyou/article/details/6622226   昨天解决了一个HttpClient调用错误导致的服务器异常,具体过程如下: http://blog.csdn.net/shootyou/article/details/661...

2018-10-16 15:17:37

阅读数:0

评论数:0

CMS之promotion failed&concurrent mode failure

CMS并行GC收集器是大多数JAVA服务应用的最佳选择,然而, CMS并不是完美的,在使用CMS的过程中会产生2个最让人头痛的问题: promotion failed 该问题是在进行Minor GC时,Survivor Space放不下,对象只能放入老年代,而此时老年代也放不下造成的。(pro...

2018-10-15 16:37:03

阅读数:11

评论数:0

知乎容器化构建系统设计和实践

知乎选用 Jenkins 作为构建方案,因其强大和灵活,且有非常丰富的插件可供使用和扩展。早期,应用数量较少时,每个开发者都手动创建并维护着几个 Job,各自编写 Jenkins Job 的配置,以及手动触发构建。    关于    知乎应用平台团队基于 Jenkins Pipeline 和 ...

2018-10-15 10:54:52

阅读数:13

评论数:0

基于Wide & Deep Learning的推荐系统

我们先来看下Google Inc的paper:Wide & Deep Learning for Recommender Systems。 一、介绍 推荐系统可以看成是一个搜索排序系统,其中输入的query是一个用户和上下文的集合,输出是一个item列表。给定一个quer...

2018-10-12 17:53:45

阅读数:17

评论数:0

构建并用 TensorFlow Serving 部署 Wide & Deep 模型

Wide & Deep 模型是谷歌在 2016 年发表的论文中所提到的模型。在论文中,谷歌将 LR 模型与 深度神经网络 结合在一起作为 Google Play 的推荐获得了一定的效果。在这篇论文后,Youtube,美团等公司也进行了相应的尝试并公开了他们的工作(相关链接请...

2018-10-12 17:10:46

阅读数:13

评论数:0

数十种TensorFlow实现案例汇集:代码+笔记

这是使用 TensorFlow 实现流行的机器学习算法的教程汇集。本汇集的目标是让读者可以轻松通过案例深入 TensorFlow。 这些案例适合那些想要清晰简明的 TensorFlow 实现案例的初学者。本教程还包含了笔记和带有注解的代码。 项目地址:https://github.com/...

2018-10-12 16:43:18

阅读数:18

评论数:0

简单易学的深度学习算法:Wide & Deep Learning

1、背景 本文提出Wide & Deep模型,旨在使得训练得到的模型能够同时获得记忆(memorization)和泛化(generalization)能力: 记忆(memorization)即从历史数据中发现item或者特征之间的相关性。 泛化(generalizatio...

2018-10-12 16:38:34

阅读数:19

评论数:0

读完这篇文章,就基本搞定了Redis数据库

另外,Redis 也经常用来做分布式锁。Redis 提供了多种数据类型来支持不同的业务场景。 除此之外,Redis 支持事务 、持久化、LUA 脚本、LRU 驱动事件、多种集群方案。 本文将从以下几个方面全面解读 Redis: 为什么要用 Redis / 为什么要用缓存 为什么要用 Red...

2018-10-12 16:01:10

阅读数:34

评论数:0

步步深入MySQL:架构->查询执行流程->SQL解析顺序

一、前言 一直是想知道一条SQL语句是怎么被执行的,它执行的顺序是怎样的,然后查看总结各方资料,就有了下面这一篇博文了。 本文将从MySQL总体架构--->查询执行流程--->语句执行顺序来探讨一下其中的知识。 二、MySQL架构总览 架构最好看...

2018-10-12 15:39:45

阅读数:20

评论数:0

MySQL死锁分析

为什么要懂数据库锁? 通常来说对于一般的开发人员,在使用数据库的时候一般懂点 DQL(select),DML(insert,update,delete)就够了。 小明是一个刚刚毕业在互联网公司工作的 Java 开发工程师,平常的工作就是完成 PM 的需求。 当然在完成需求的同时肯定逃脱不了 ...

2018-10-12 15:33:07

阅读数:14

评论数:0

CTR预估算法之FM, FFM, DeepFM及实践

目录   目录 CTR预估综述 Factorization Machines(FM) 算法原理 代码实现 Field-aware Factorization Machines(FFM) 算法原理 代码实现 Deep FM 算法原理 代码实现 参考...

2018-10-09 14:44:36

阅读数:12

评论数:0

【十大经典数据挖掘算法】PageRank

作者简介:Treant 人工智能爱好者社区专栏作者 博客专栏:https://www.cnblogs.com/en-heng   引言 PageRank是Sergey Brin与Larry Page于1998年在WWW7会议上提出来的,用来解决链接分析中网页排名的问题。在衡量一个网页的排名,...

2018-10-09 13:41:54

阅读数:18

评论数:0

推荐系统遇上深度学习(二十二):DeepFM升级版XDeepFM模型强势来袭!

今天我们要学习的模型是xDeepFM模型,论文地址为:https://arxiv.org/abs/1803.05170。文中包含我个人的一些理解,如有不对的地方,欢迎大家指正!废话不多说,我们进入正题! 1、引言 对于预测性的系统来说,特征工程起到了至关重要的作用。特征工程中,挖掘交叉特征是至...

2018-10-09 13:37:58

阅读数:32

评论数:0

FM系列算法解读(FM+FFM+DeepFM)

综述   在计算广告中,CTR是非常重要的一环。对于特征组合来说,业界通用的做法主要有两大类:FM系列和Tree系列。这里我们来介绍一下FM系列。   在传统的线性模型中,每个特征都是独立的,如果需要考虑特征与特征之间的相互作用,可能需要人工对特征进行交叉组合。非线性SVM可以对特征进行核变换,...

2018-10-08 19:04:47

阅读数:29

评论数:0

详解分布式协调服务 ZooKeeper

这篇文章主要会介绍 Zookeeper 的实现原理以及常见的应用 在 2006 年,Google 发表了一篇名为 The Chubby lock service for loosely-coupled distributed systems 的论文,其中描述了一个分布式锁服务 Chubby 的设...

2018-10-08 11:18:22

阅读数:131

评论数:0

AI面试必备!你不可不知的10个深度学习方法

过去十年来,人们对机器学习的兴趣经历了爆炸式的增长。你几乎每天都能在计算机科学程序、行业会议和《华尔街日报》(Wall Street Journal)上看到机器学习的影子。在所有关于机器学习的讨论中,许多人都将机器学习能够做什么,与他们希望机器学习能够做什么混为一谈了。从根本上来说,机器学习就是使...

2018-10-08 10:46:43

阅读数:59

评论数:0

AlphaGo之父亲授深度强化学习十大法则

原则 #1 评价驱动发展 客观、量化的评价驱动进展: 评价指标的选择决定了进展的方向 这可以说是项目过程中最重要的决策 排行榜驱动的研究: 确保评价指标紧贴最终目标 避免主观评估(如人为监测) 假设驱动的研究: 提出假设: “双 Q 学习优...

2018-10-08 10:41:16

阅读数:21

评论数:0

推荐系统中使用ctr排序的f(x)的设计-传统模型篇

一. 什么是ctr? ctr即广告点击率,在推荐系统中,通常是按照ctr来对召回的内容子集进行排序,然后再结合策略进行内容的分发。 二. ctr预估模型的发展。 ctr预估模型的公式:y = f(x), y的范围为[0,1],表示广告被点击的概率。 1. LR 海量高纬离散特征 LR(l...

2018-09-30 14:51:36

阅读数:13

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭