排序:
默认
按更新时间
按访问量

Attention的梳理、随想与尝试

转自:https://zhuanlan.zhihu.com/p/38281113(一)深度学习中的直觉3 X 1 and 1 X 3 代替 3 X 3LSTM中的门设计Attention机制的本质来自于人类视觉注意力机制。人们视觉在感知东西的时候一般不会是一个场景从到头看到尾每次全部都看,而往往是...

2018-06-21 10:39:02

阅读数:16

评论数:0

99%的人都理解错了HTTP中GET与POST的区别

GET和POST是HTTP请求的两种基本方法,要说它们的区别,接触过WEB开发的人都能说出一二。最直观的区别就是GET把参数包含在URL中,POST通过request body传递参数。你可能自己写过无数个GET和POST请求,或者已经看过很多权威网站总结出的他们的区别,你非常清楚知道什么时候该用...

2018-06-21 10:28:57

阅读数:41

评论数:0

sklearn API 文档

所有函数和类的确切API,由docstrings给出。API会为所有功能提供预期类型和允许的功能,以及可用于算法的所有参数。原文链接 : http://scikit-learn.org/stable/modules/classes.html译文链接 : http://cwiki.apachecn....

2018-06-19 21:01:57

阅读数:111

评论数:0

机器学习实战(用Scikit-learn和TensorFlow进行机器学习)(九)

上几节介绍了多种模型(线性模型、支持向量机、集成学习),这一节介绍一类新的预处理方法。 九、降维(Dimensionality Reduction)  在现实生活中很多机器学习问题有上千维,甚至上万维特征,这不仅影响了训练速度,通常还很难找到比较好的解。这样的问题成为维数灾难(curse of d...

2018-06-19 20:26:53

阅读数:32

评论数:0

机器学习实战(用Scikit-learn和TensorFlow进行机器学习)(八)

上一节讲了决策树算法,虽然存在一些局限性,但是正是这种局限性造就了集成学习中的随机森林算法。 八、集成学习与随机森林  假设要解决一个复杂的问题,让众多学生去回答,然后汇总他们的答案。在许多情况下,会发现这个汇总的答案比一个老师的答案要好。同样,如果汇总了一组预测变量(例如分类器或回归因子)的预测...

2018-06-19 20:25:25

阅读数:5

评论数:0

机器学习实战(用Scikit-learn和TensorFlow进行机器学习)(七)

上一节讲了SVM,这一节将另外一个强大的算法:决策树,它能够处理回归和分类问题,甚至是多输出问题,能够拟合复杂的数据(容易过拟合),而且它是集成算法:随机森林(Random forest)的基础,下面开始介绍决策树Scikit-learn的用法,以及参数的选择及算法的局限性。 七、决策树(Deci...

2018-06-19 20:21:48

阅读数:25

评论数:0

机器学习实战(用Scikit-learn和TensorFlow进行机器学习)(六)

上一节讲述了线性模型,Logistic回归模型,Softmax模型,他们这种通过定义损失函数,然后计算损失函数的梯度,并求平均值来更新参数。下面介绍一种新的模型。六、支持向量机(Support Vector Machines)  支持向量机(SVM)是一种非常强大的机器学习模型,能够进行线性、非线...

2018-06-19 20:18:59

阅读数:32

评论数:0

机器学习实战(用Scikit-learn和TensorFlow进行机器学习)(五)

上几节讲述了真实数据集在回归问题以及分类问题上的总流程,但是对于模型的选择及参数的选择仍然一知半解,因此本节开始讲述关于模型的一些知识,本节会略过一些比较基础的知识,将一些较为深入的知识。如果在哪个方面没有看懂,可以在网上查询,网上基础资料也比较多,也可以在下方评论。五、训练模型1、线性模型线性模...

2018-06-19 20:08:32

阅读数:26

评论数:0

机器学习实战(用Scikit-learn和TensorFlow进行机器学习)(四)

上一节三节讲述了真实数据(csv表格数据)的一个实战操作的总流程,然而这个处理是一个回归模型,即目标是一些连续的值(median_house_value)。当目标是一些有限的离散值得时候(比如数字0-9),就变成了分类问题,下面开始讲述分类问题。四、分类问题  下面将使用新的具有代表性的数据集MN...

2018-06-19 20:06:30

阅读数:31

评论数:0

机器学习实战(用Scikit-learn和TensorFlow进行机器学习)(三)

上一节讲述了真实数据(csv表格数据)训练集的查看与预处理以及Pineline的基本架构。今天接着往下进行实战操作,会用到之前的数据和代码,如果有问题请查看上一节。三、开始实战 7、选择及训练模型   首先尝试训练一个线性回归模型(LinearRegression)from sklearn.lin...

2018-06-19 20:04:02

阅读数:2

评论数:0

机器学习实战(用Scikit-learn和TensorFlow进行机器学习)(二)

上一节讲述了真实数据(csv表格数据)的查看以及如何正确的分开训练测试集。今天接着往下进行实战操作,会用到之前的数据和代码,如果有问题请查看上一节。 三、开始实战(处理CSV表格数据) 5、查看训练集的特征图像信息以及特征之间的相关性  上一节粗略地查看了数据的统计信息,接下来需要从训练样本中得到...

2018-06-19 20:00:23

阅读数:32

评论数:0

如何用50行代码构建情感分类器

选自Toward Data Science,作者:Rohith Gandhi,机器之心编译。本文介绍了如何构建情感分类器,从介绍自然语言处理开始,一步一步讲述构建过程。自然语言处理简介语言把人类联系在一起。语言是一种工具,它既可以让我们把想法和感受传达给另一个人,也能让我们理解别人的想法和感受。我...

2018-06-19 10:01:26

阅读数:20

评论数:0

ElasticSearch插件demo

环境:操作系统:win7elasticsearch版本:5.4.4java:1.8参考文章:1、Elasticsearch权威指南(中文版)2、Elasticsearch笔记五之java操作es3、java操作ElasticSearch(es)进行增删查改操作4、ElasticSearch入门-增...

2018-06-13 14:15:49

阅读数:20

评论数:0

python的中文文本挖掘库snownlp进行购物评论文本情感分析实例

昨晚上发现了snownlp这个库,很开心。先说说我开心的原因。我本科毕业设计做的是文本挖掘,用R语言做的,发现R语言对文本处理特别不友好,没有很多强大的库,特别是针对中文文本的,加上那时候还没有学机器学习算法。所以很头疼,后来不得已用了一个可视化的软件RostCM,但是一般可视化软件最大的缺点是无...

2018-06-13 14:09:06

阅读数:119

评论数:0

互联网广告综述之点击率系统

一.互联网广告技术博文《互联网广告综述之生态圈》论述过互联网广告生态圈的各个平台,大家可以看到,其中的Ad exchange是躺着赚钱的平台,风险并不大。其中的DSP就承担了比较多的风险,如果向Ad exchange请求的流量太贵,而广告主开价比较低的话,就可能面临亏钱。另外,广告主的需求是变化多...

2018-06-13 11:28:49

阅读数:30

评论数:0

【机器学习】对于特征离散化,特征交叉,连续特征离散化非常经典的解释

一.互联网广告特征工程博文《互联网广告综述之点击率系统》论述了互联网广告的点击率系统,可以看到,其中的logistic regression模型是比较简单而且实用的,其训练方法虽然有多种,但目标是一致的,训练结果对效果的影响是比较大,但是训练方法本身,对效果的影响却不是决定性的,因为训练的是每个特...

2018-06-13 10:24:26

阅读数:26

评论数:0

【机器学习】特征工程七种常用方法

当在做数据挖掘和数据分析时,数据是所有问题的基础,并且会影响整个工程的流程。相比一些复杂的算法,如何灵活的处理好数据经常会取到意想不到的效益。而处理数据不可或缺的需要使用到特征工程。原文链接0 什么是特征工程简单的说,特征工程是能够将数据像艺术一样展现的技术。为什么这么说呢?因为好的特征工程很好的...

2018-06-12 10:30:35

阅读数:63

评论数:0

HBase总结(二十)HBase常用shell命令详细说明

进入hbase shell console$HBASE_HOME/bin/hbase shell如果有kerberos认证,需要事先使用相应的keytab进行一下认证(使用kinit命令),认证成功之后再使用hbase shell进入可以使用whoami命令可查看当前用户hbase(main)&a...

2018-06-12 09:28:44

阅读数:22

评论数:0

用 Mahout 和 Elasticsearch 实现推荐系统

原文地址本文内容软件步骤控制相关性总结参考资料本文介绍如何用带 Apache Mahout 的 MapR Sandbox for Hadoop 和 Elasticsearch 搭建推荐引擎,只需要很少的代码。This tutorial will give step-by-step instruct...

2018-06-12 09:28:33

阅读数:23

评论数:0

Elasticsearch:Elasticsearch基础上构建推荐引擎 资料收集

1. 深入了解推荐引擎组件(基于Apache Mahout和Elasticsearch)http://www.csdn.net/article/2015-05-14/2824676ES+mahout机器学习做用户筛选、分类和推荐。2. Apach Mahout 简介【IBM教程,质量有保证】htt...

2018-06-12 09:28:15

阅读数:25

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭