图节点的度。
图论中:
节点度是指和该节点相关联的边的条数,又称关联度。
特别地,对于有向图,
节点的入度 是指进入该节点的边的条数;
节点的出度是指从该节点出发的边的条数。
题目
方法一:枚举
思路与算法
根据题意可知,两座不同城市构成的城市对的网络秩定义为:与这两座城市直接相连的道路总数,这两座城市之间的道路只计算一次。假设城市
�
x 的度数为
degree
[
�
]
degree[x],则此时我们可以知道城市对
(
�
,
�
)
(i,j) 的网络秩为如下:
如果
�
i 与
�
j 之间没有道路连接,则此时
(
�
,
�
)
(i,j) 的网络秩为
degree
[
�
]
+
degree
[
�
]
degree[i]+degree[j];
如果
�
i 与
�
j 之间存在道路连接,则此时
(
�
,
�
)
(i,j) 的网络秩为
degree
[
�
]
+
degree
[
�
]
−
1
degree[i]+degree[j]−1;
根据以上求网络秩的方法,我们首先求出所有城市在图中的度数,然后枚举所有可能的城市对
(
�
,
�
)
(i,j),求出城市对
(
�
,
�
)
(i,j) 的网络秩,即可找到最大的网络秩。
作者:LeetCode-Solution
链接:https://leetcode.cn/problems/maximal-network-rank/solution/zui-da-wang-luo-zhi-by-leetcode-solution-x4gx/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
class Solution {
public int maximalNetworkRank(int n, int[][] roads) {
boolean[][] connect = new boolean[n][n];
int[] degree = new int[n];
for (int[] v : roads) {
connect[v[0]][v[1]] = true;
connect[v[1]][v[0]] = true;
degree[v[0]]++;
degree[v[1]]++;
}
int maxRank = 0;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
int rank = degree[i] + degree[j] - (connect[i][j] ? 1 : 0);
maxRank = Math.max(maxRank, rank);
}
}
return maxRank;
}
}
数组存放不同的基本数据类型和String时有默认值,且默认值为:
整型 (byte,short,int,long):默认值都是 0
浮点型(float,double) :默认值都是 0.0
布尔型(boolean) :默认值是 false
字符型(char) :默认值是 一个空格
再补充一个: 字符串(String)也有默认值,且默认值是null
(后来才知道,字符串也是引用值,引用值存放在数组中的默认值都是null)
时间复杂度?
空间复杂度?
复杂度分析
时间复杂度:
�
(
�
2
)
O(n
2
),其中
�
n 表示给城市的数目。我们需要枚举所有可能的城市对,最多有
�
2
n
2
个城市对。
空间复杂度:
�
(
�
2
)
O(n
2
)。需要记录图中所有的城市之间的连通关系,需要的空间为
�
(
�
2
)
O(n
2
)。如果用邻接表存储连通关系,空间复杂度可以优化到
�
(
�
+
�
)
O(n+m),其中
�
m 表示
roads
roads 的长度。