leetcode 1

图节点的度。
图论中:
节点度是指和该节点相关联的边的条数,又称关联度。
特别地,对于有向图,
节点的入度 是指进入该节点的边的条数;
节点的出度是指从该节点出发的边的条数。
题目

方法一:枚举
思路与算法

根据题意可知,两座不同城市构成的城市对的网络秩定义为:与这两座城市直接相连的道路总数,这两座城市之间的道路只计算一次。假设城市

x 的度数为
degree
[

]
degree[x],则此时我们可以知道城市对
(

,

)
(i,j) 的网络秩为如下:

如果

i 与

j 之间没有道路连接,则此时
(

,

)
(i,j) 的网络秩为
degree
[

]
+
degree
[

]
degree[i]+degree[j];
如果

i 与

j 之间存在道路连接,则此时
(

,

)
(i,j) 的网络秩为
degree
[

]
+
degree
[

]

1
degree[i]+degree[j]−1;
根据以上求网络秩的方法,我们首先求出所有城市在图中的度数,然后枚举所有可能的城市对
(

,

)
(i,j),求出城市对
(

,

)
(i,j) 的网络秩,即可找到最大的网络秩。

作者:LeetCode-Solution
链接:https://leetcode.cn/problems/maximal-network-rank/solution/zui-da-wang-luo-zhi-by-leetcode-solution-x4gx/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

class Solution {
    public int maximalNetworkRank(int n, int[][] roads) {
        boolean[][] connect = new boolean[n][n];
        int[] degree = new int[n];
        for (int[] v : roads) {
            connect[v[0]][v[1]] = true;
            connect[v[1]][v[0]] = true;
            degree[v[0]]++;
            degree[v[1]]++;
        }

        int maxRank = 0;
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                int rank = degree[i] + degree[j] - (connect[i][j] ? 1 : 0);
                maxRank = Math.max(maxRank, rank);
            }
        }
        return maxRank;
    }
}

数组存放不同的基本数据类型和String时有默认值,且默认值为:

整型 (byte,short,int,long):默认值都是 0
浮点型(float,double) :默认值都是 0.0
布尔型(boolean) :默认值是 false
字符型(char) :默认值是 一个空格
再补充一个: 字符串(String)也有默认值,且默认值是null
(后来才知道,字符串也是引用值,引用值存放在数组中的默认值都是null)

时间复杂度?
空间复杂度?

复杂度分析

时间复杂度:

(

2
)
O(n
2
),其中

n 表示给城市的数目。我们需要枚举所有可能的城市对,最多有

2
n
2
个城市对。

空间复杂度:

(

2
)
O(n
2
)。需要记录图中所有的城市之间的连通关系,需要的空间为

(

2
)
O(n
2
)。如果用邻接表存储连通关系,空间复杂度可以优化到

(

+

)
O(n+m),其中

m 表示
roads
roads 的长度。

时间复杂度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值