代码随想录打卡|Day31动态规划(最后一块石头的重量2、目标和、一和零)

动态规划Part 04

最后一块石头的重量 II

力扣题目链接
代码随想录链接
视频讲解链接

题目描述: 有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0。
在这里插入图片描述

动态规划

  1. dp[i]:装满容量为i的最大重量。
  2. 初始化:将dp数组的所有值初始化为0即可
  3. 我们需要获取最大值,所以dp数组所有的值初始化为0即可。
  4. 遍历顺序,物品从前到后,背包从后到前
  5. 打印

代码如下:

class Solution {
    public int lastStoneWeightII(int[] stones) {
        int sum = 0;
        for(int i : stones)
            sum += i;
        int target = sum / 2;
        int[] dp = new int[target + 1];

        for(int i = 0 ; i < stones.length ; i++){
            for(int j = target ; j >= stones[i] ; j--){
                dp[j] = Math.max(dp[j] , dp[j - stones[i]] + stones[i]);
            }
        }
        return sum - dp[target] -dp[target];
    }
}

目标和

力扣题目链接
代码随想录链接
视频讲解链接

题目描述: 给你一个非负整数数组 nums 和一个整数 target 。

向数组中的每个整数前添加 ‘+’ 或 ‘-’ ,然后串联起所有整数,可以构造一个 表达式 :

例如,nums = [2, 1] ,可以在 2 之前添加 ‘+’ ,在 1 之前添加 ‘-’ ,然后串联起来得到表达式 “+2-1” 。
返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

代码:(详细的分析流程见代码随想录)

class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int sum = 0;
        for(int i : nums)
            sum += i;
        
        //如果target的绝对值大于sum,那么是没有方案的
        if (Math.abs(target) > sum) return 0;
        //如果(target+sum)除以2的余数不为0,也是没有方案的
        if ((target + sum) % 2 == 1) return 0;


        int leftSum = (target + sum) / 2;

        int[] dp = new int[leftSum + 1];
        dp[0] = 1;

        for(int i = 0 ; i < nums.length ; i++){
            for(int j = leftSum ; j >= nums[i] ; j --){
                dp[j] += dp[j - nums[i]];
            }
        }
        return dp[leftSum];
    }
}

一和零

力扣题目链接
代码随想录链接
视频讲解链接

题目描述:给你一个二进制字符串数组 strs 和两个整数 m 和 n 。

请你找出并返回 strs 的最大子集的长度,该子集中 最多 有 m 个 0 和 n 个 1 。

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。

在这里插入图片描述

代码如下:

class Solution {
    public int findMaxForm(String[] strs, int m, int n) {
        int[][] dp = new int[m+1][n+1];

        for(String str : strs){
            int x= 0;
            int y = 0;
            for(int c = 0 ; c < str.length() ; c++){
                if(str.charAt(c) == '0') x++;
                else y++;
            }
            for(int i = m ; i >= x  ; i--){
                for(int j = n ; j >= y ; j--){
                    dp[i][j] = Math.max(dp[i][j],dp[i - x][j - y] + 1);
                }
            }
            
        }
        return dp[m][n];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值