文章目录
前言
本文是我学习b站视频DeepSeek + RAGFlow 构建个人知识库的笔记,加入了我复现过程中的经验教训,供自己记忆查阅,同时给有需要的人提供帮助。
一、下载ollama
通过ollama将DeepSeek模型下载到本地运行。
1.下载
2.配置环境变量
① OLLAMA HOST -0.0.0.0:11434
ollama默认情况下只允许本机访问,而我们想要通过Docker部署。这一配置让虚拟机里的RAGFlow能够访问本机上的Ollama。
② OLLAMA MODELS 自定义位置
ollama会默认把模型下载到C盘,如果希望下载到其他盘要进行配置。
方法
电脑“设置”-“系统”-“系统信息”-“高级系统设置”-“高级”-“环境变量”
新建这两个。
第二个是自定义的Ollama模型存放位置。
配置完环境变量后一定要记得重启电脑才能生效!
3.通过ollama下载模型到本地
ollama官网-model
搜索deepseek-r1下载,有不同参数大小可以选择。高参数效果好,但对电脑配置要求高。可以从1.5b开始尝试。
来自评论区(uid:78652351)的配置参考:
3080 10G最多跑14B模型,思考2-4秒,这个模型顶多用来处理问答检索,而且是大白话的问答,不要让他过多思考。
4090 24G最多跑32B模型,思考2-4秒,回答速度非常快,推理能力也很强,可以给模糊规则或问答,基本能回答正确。
复制这一行命令。
window键+R 打开命令行,输入cmd,打开终端。
将命令粘贴下去,Enter。模型开始下载。
下载完成后,能对话就说明成功了。
你可能会用得上的终端命令
查看所有模型
ollama list
删除指定模型
ollama rm <模型名称>
二、下载RAGflow源代码和Docker
通过Docker来本地部署RAGflow。
1.下载RAGflow源代码
方法1:在终端使用git命令
可以先进入你想存放的位置再git。
git clone https://github.com/infiniflow/ragflow.git
方法2:直接在GitHub上下载,解压
ragflow官方代码GitHub
点击绿色的Code按钮,点击Download ZIP。
2.下载Docker
为什么要下载Docker? 因为RAGflow源代码并不包含它运行所需要的环境。Docker镜像相当于一个封装好的环境,有了Docker我们就不需要自己痛苦地本地配置环境啦。
下载你的系统对应的版本。
3.修改RAGflow的配置
默认的配置是轻量版的,给它改成完整版,才会包含embedding model,就不用自己去下载了。
打开刚刚下载的ragflow文件夹,有一个docker文件夹,打开.env文件。
红色的前面加#注释掉,蓝色的把前面的#去掉。记得保存。
4.下载RAGFlow Docker的镜像
这一步将要下载很多东西,由于国内网络环境问题,我们先配置镜像源确保后续下载顺利。(没配置好镜像就是最折磨的一步!)
打开Docker Desktop,点击右上角设置图标,点击左边Docker Engine,添加镜像源。
也就是加上这一段。
,
"registry-mirrors": [
"https://docker.1ms.run"
]
我做的时候(2025.3.25)试过好些镜像源,只有这个亲测可用。
注意逗号,注意缩进格式,添加完成后下面不报红才对。完成后点击Apply & restart。
然后在终端ragflow文件夹下,输入这个命令。
docker compose -f docker/docker-compose.yml up -d
在运行这个命令时,确保你的Docker Desktop是正在运行的。
等待较为漫长的下载,全部下载好就完成了。
三、在RAGflow中构建个人知识库
在浏览器中新开一个窗口,输入localhost:80,能看到RAGFlow就是部署成功了。注册登录。
1.添加下载的模型
点击右上角头像,点击左边模型提供商,点击ollama。
模型类型:选择chat。
模型名称:一定要严格复制你的模型名称。可以在终端使用 ollama list 命令找到。
基础Url:首先,在终端输入 ipconfig ,然后复制你自己的IPv4地址。
http://<你自己的IPv4地址>:11434
最大token数:随便填一个。
然后在右上角“系统模型设置”-”聊天模型“,选择自己的模型。
”嵌入模型“选择下图这个。
2.创建自己的知识库
接下来就没什么难点了。在"知识库"里“创建知识库”,上传你的文件,记得点击解析。等待解析完成知识库就创建好了。
你的docker desktop需要保持运行!如果解析失败可能是连接问题,可以再试试。
3.创建聊天助理
在"聊天“-”新建助理“里创建聊天助理,可以根据你自己的需求修改提示词。比如将涉及知识库的要求删除,让模型根据自己本身的能力回答问题。
在模型设置里,选择要使用的模型。
创建好助理后,新建聊天就可以让助理根据你的知识库回答问题啦!
总结
感觉有帮助的可以点个赞支持一下!(❁´◡`❁)