#include <stdio.h>
#include <stdlib.h>
#define MAXNUM 100000
typedef int ElementType;
void Swap( ElementType *a, ElementType *b ) {
ElementType t = *a; *a = *b; *b = t;
}
void BubbleSort( ElementType A[], int N ) { /* 冒泡排序 */
int flag;
for( int P = N-1; P >= 0; P-- ) {
flag = 0;
for( int i = 0; i < P; i++ )
if( A[i] > A[i+1] ) {
Swap(&A[i], &A[i+1]);
flag = 1;
}
if( !flag ) break; // 全程无交换
}
}
void InsertionSort( ElementType A[], int N ) { /* 插入排序 */
int P, i;
ElementType Tmp;
for ( P=1; P<N; P++ ) {
Tmp = A[P]; /* 取出未排序序列中的第一个元素*/
for ( i=P; i>0 && A[i-1]>Tmp; i-- )
A[i] = A[i-1]; /*依次与已排序序列中元素比较并右移*/
A[i] = Tmp; /* 放进合适的位置 */
}
}
void ShellSort( ElementType A[], int N ) { /* 希尔排序 - 用Sedgewick增量序列 */
int Si, D, P, i;
ElementType Tmp;
/* 这里只列出一小部分增量 */
int Sedgewick[] = {929, 505, 209, 109, 41, 19, 5, 1, 0};
for ( Si=0; Sedgewick[Si]>=N; Si++ )
; /* 初始的增量Sedgewick[Si]不能超过待排序列长度 */
for ( D=Sedgewick[Si]; D>0; D=Sedgewick[++Si] )
for ( P=D; P<N; P++ ) { /* 插入排序*/
Tmp = A[P];
for ( i=P; i>=D && A[i-D]>Tmp; i-=D )
A[i] = A[i-D];
A[i] = Tmp;
}
}
void PercDown( ElementType A[], int p, int N )
{ /* 改编代码4.24的PercDown( MaxHeap H, int p ) */
/* 将N个元素的数组中以A[p]为根的子堆调整为最大堆 */
int Parent, Child;
ElementType X;
X = A[p]; /* 取出根结点存放的值 */
for( Parent=p; (Parent*2+1)<N; Parent=Child ) {
Child = Parent * 2 + 1;
if( (Child!=N-1) && (A[Child]<A[Child+1]) )
Child++; /* Child指向左右子结点的较大者 */
if( X >= A[Child] ) break; /* 找到了合适位置 */
else /* 下滤X */
A[Parent] = A[Child];
}
A[Parent] = X;
}
void HeapSort( ElementType A[], int N ) { /* 堆排序 */
int i;
for ( i=N/2-1; i>=0; i-- )/* 建立最大堆 */
PercDown( A, i, N );
for ( i=N-1; i>0; i-- ) {
/* 删除最大堆顶 */
Swap( &A[0], &A[i] ); /* 见代码7.1 */
PercDown( A, 0, i );
}
}
/* 归并排序 - 递归实现 */
/* L = 左边起始位置, R = 右边起始位置, RightEnd = 右边终点位置*/
void Merge( ElementType A[], ElementType TmpA[], int L, int R, int RightEnd ) { /* 将有序的A[L]~A[R-1]和A[R]~A[RightEnd]归并成一个有序序列 */
int LeftEnd, NumElements, Tmp;
int i;
LeftEnd = R - 1; /* 左边终点位置 */
Tmp = L; /* 有序序列的起始位置 */
NumElements = RightEnd - L + 1;
while( L <= LeftEnd && R <= RightEnd ) {
if ( A[L] <= A[R] )
TmpA[Tmp++] = A[L++]; /* 将左边元素复制到TmpA */
else
TmpA[Tmp++] = A[R++]; /* 将右边元素复制到TmpA */
}
while( L <= LeftEnd )
TmpA[Tmp++] = A[L++]; /* 直接复制左边剩下的 */
while( R <= RightEnd )
TmpA[Tmp++] = A[R++]; /* 直接复制右边剩下的 */
for( i = 0; i < NumElements; i++, RightEnd -- )
A[RightEnd] = TmpA[RightEnd]; /* 将有序的TmpA[]复制回A[] */
}
void Msort( ElementType A[], ElementType TmpA[], int L, int RightEnd ) { /* 核心递归排序函数 */
int Center;
if ( L < RightEnd ) {
Center = (L+RightEnd) / 2;
Msort( A, TmpA, L, Center ); /* 递归解决左边 */
Msort( A, TmpA, Center+1, RightEnd ); /* 递归解决右边 */
Merge( A, TmpA, L, Center+1, RightEnd ); /* 合并两段有序序列 */
}
}
void MergeSort( ElementType A[], int N ) { /* 归并排序 */
ElementType *TmpA;
TmpA = (ElementType *)malloc(N*sizeof(ElementType));
if ( TmpA != NULL ) {
Msort( A, TmpA, 0, N-1 );
free( TmpA );
}
else printf( "空间不足" );
}
/* 归并排序 - 循环实现 */
/* 这里Merge函数在递归版本中给出 */
/* length = 当前有序子列的长度*/
void Merge_pass( ElementType A[], ElementType TmpA[], int N, int length ) { /* 两两归并相邻有序子列 */
int i, j;
for ( i=0; i <= N-2*length; i += 2*length )
Merge( A, TmpA, i, i+length, i+2*length-1 );
if ( i+length < N ) /* 归并最后2个子列*/
Merge( A, TmpA, i, i+length, N-1);
else /* 最后只剩1个子列*/
for ( j = i; j < N; j++ ) TmpA[j] = A[j];
}
void Merge_Sort( ElementType A[], int N ) {
int length;
ElementType *TmpA;
length = 1; /* 初始化子序列长度*/
TmpA = malloc( N * sizeof( ElementType ) );
if ( TmpA != NULL ) {
while( length < N ) {
Merge_pass( A, TmpA, N, length );
length *= 2;
Merge_pass( TmpA, A, N, length );
length *= 2;
}
free( TmpA );
}
else printf( "空间不足" );
}
/* 快速排序 - 直接调用库函数 */
/*---------------简单整数排序--------------------*/
int compare(const void *a, const void *b) { /* 比较两整数。非降序排列 */
return (*(int*)a - *(int*)b);
}
/* 调用接口 */
// qsort(A, N, sizeof(int), compare);
/* 快速排序 */
ElementType Median3( ElementType A[], int Left, int Right ) {
int Center = (Left+Right) / 2;
if ( A[Left] > A[Center] )
Swap( &A[Left], &A[Center] );
if ( A[Left] > A[Right] )
Swap( &A[Left], &A[Right] );
if ( A[Center] > A[Right] )
Swap( &A[Center], &A[Right] );
/* 此时A[Left] <= A[Center] <= A[Right] */
Swap( &A[Center], &A[Right-1] ); /* 将基准Pivot藏到右边*/
/* 只需要考虑A[Left+1] … A[Right-2] */
return A[Right-1]; /* 返回基准Pivot */
}
void Qsort( ElementType A[], int Left, int Right ) { /* 核心递归函数 */
int Pivot, Cutoff, Low, High;
if ( Cutoff <= Right-Left ) { /* 如果序列元素充分多,进入快排 */
Pivot = Median3( A, Left, Right ); /* 选基准 */
Low = Left; High = Right-1;
while (1) { /*将序列中比基准小的移到基准左边,大的移到右边*/
while ( A[++Low] < Pivot ) ;
while ( A[--High] > Pivot ) ;
if ( Low < High ) Swap( &A[Low], &A[High] );
else break;
}
Swap( &A[Low], &A[Right-1] ); /* 将基准换到正确的位置 */
Qsort( A, Left, Low-1 ); /* 递归解决左边 */
Qsort( A, Low+1, Right ); /* 递归解决右边 */
}
else InsertionSort( A+Left, Right-Left+1 ); /* 元素太少,用简单排序 */
}
void QuickSort( ElementType A[], int N ) { /* 统一接口 */
Qsort( A, 0, N-1 );
}
int main() {
int N;
int A[MAXNUM];
scanf( "%d", &N );
for( int i = 0; i < N; i++ )
scanf( "%d", &A[i] );
// BubbleSort(A, N);
// InsertionSort(A, N);
// ShellSort(A, N);
// HeapSort(A, N);
// MergeSort(A, N);
// Merge_Sort(A, N);
// qsort(A, N, sizeof(int), compare);
// QuickSort(A, N); // 段错误??
printf( "%d", A[0] );
for( int i = 1; i < N; i++ )
printf( " %d", A[i] );
}
09-排序1 排序
最新推荐文章于 2023-12-26 21:28:09 发布
这篇博客详细介绍了多种排序算法的C语言实现,包括冒泡排序、插入排序、希尔排序、堆排序、归并排序和快速排序。每种排序算法都有清晰的代码展示,适用于理解排序算法原理和实际应用。此外,还提供了快速排序的两种实现方式:递归和非递归。
摘要由CSDN通过智能技术生成