使用Numpy创建Series
import numpy as np
import pandas as pd
s=pd.Series(
np.arange(10,100,10),
index=np.arange(101,110),
dtype='float'
)
print(s)
运行结果如下:
转换Series的数据类型
在 Pandas 中,这个转换过程可以通过 astype() 方法来实现。所以 astype() 方法用于将 Pandas 中的对象转换为不同的数据类型。分类类型的转换也可以从一种特定的列类型来实现。语法:
DataFrame.astype(self: ~FrameOrSeries, dtype, copy: bool = True, errors: str = 'raise')
将字符串转换为数字类型
import pandas as pd
s=pd.Series(
data=['001','002','003','004'],
index=list('abcd')
)
S=s.astype(int)
print(s)
print(S)
运行结果如下:
使用map()函数也可以达到数据转换的效果
import pandas as pd
s=pd.Series(
data=['001','002','003','004'],
index=list('abcd')
)
#S=s.astype(int)
S=s.map(int)
print(S)
运行结果如下:
给Series添加元素
import pandas as pd
grades={'chinese':80,'math':90,'english':75,'computer':90}
data=pd.Series(data=grades)
#添加元素
#data本身不会变,在此处用新的data替换
data=data.append(pd.Series(
{
'physics':88,
'chemistry':80
}
))
print(data)
或者用data['a']='内容‘也可以添加
import pandas as pd
grades={'chinese':80,'math':90,'english':75,'computer':90}
data=pd.Series(data=grades)
data['physics']=88
data['chemistry']=80
print(data)
运行结果如下: