数据分析第二章

使用Numpy创建Series

import numpy as np
import pandas as pd
s=pd.Series(
    np.arange(10,100,10),
    index=np.arange(101,110),
    dtype='float'
)
print(s)

运行结果如下:

转换Series的数据类型

在 Pandas 中,这个转换过程可以通过 astype() 方法来实现。所以 astype() 方法用于将 Pandas 中的对象转换为不同的数据类型。分类类型的转换也可以从一种特定的列类型来实现。语法:

DataFrame.astype(self: ~FrameOrSeries, dtype, copy: bool = True, errors: str = 'raise')

将字符串转换为数字类型

import pandas as pd
s=pd.Series(
    data=['001','002','003','004'],
    index=list('abcd')
)
S=s.astype(int)
print(s)
print(S)

运行结果如下:

使用map()函数也可以达到数据转换的效果

import pandas as pd
s=pd.Series(
    data=['001','002','003','004'],
    index=list('abcd')
)
#S=s.astype(int)
S=s.map(int)
print(S)

运行结果如下:

 给Series添加元素

import pandas as pd
grades={'chinese':80,'math':90,'english':75,'computer':90}
data=pd.Series(data=grades)
#添加元素
#data本身不会变,在此处用新的data替换
data=data.append(pd.Series(
    {
        'physics':88,
        'chemistry':80
    }
))
print(data)

或者用data['a']='内容‘也可以添加

import pandas as pd
grades={'chinese':80,'math':90,'english':75,'computer':90}
data=pd.Series(data=grades)
data['physics']=88
data['chemistry']=80
print(data)

运行结果如下:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值