代码星球|数组-二分法-leetcode 34

本文介绍了一种使用二分查找算法在非递减数组中寻找目标值及其连续出现范围的方法,通过两次独立的二分搜索,分别找到目标值的开始和结束位置,时间复杂度为O(logn)。
摘要由CSDN通过智能技术生成

1. 思路

(1)时间复杂度O(log n):这是一道需要用二分法解决的问题。

(2)这是一个非递减的数组:可能有多于1个的目标值连续出现。当找到了一个目标之后,连续目标值的首尾可以通过排除目标值的方法来搜索。

(3)考虑有目标值的情况:

  •  找到目标数组的开始/结束位置:翻译过来就是找到一个值,既要等于目标值,左边/右边不是目标值。
  • 搜索开始位置时,当搜索到目标值,将右端点更新到中值左边,缩小区间,直到所有目标值都被排除。取左端点作为结束。
  • 结束为止同理,当搜索到目标值,将左端点更新到中值右边,取右端点作为结束。

(4)没有目标值的情况:直接输出{-1, -1}。

 2. 代码

class Solution {
public:
    vector<int> searchRange(vector<int>& nums, int target) {
        // 首先给左边界初始化,然后找左边界,并赋值,最后返回左边界
        int left = 0;
        int right = nums.size() - 1;
        int first = -1;
        while (left <= right) {
            int mid = left + ((right - left)>>1);
            if (nums[mid] == target) {
                first = mid;
                right = mid -1;
            } 
            else if (nums[mid] > target) {
                right = mid - 1;
            }
            else {
                left = mid + 1;
            }
        }
        // 右边界,
        left = 0;
        right = nums.size() - 1;
        int last = -1;
        while (left <= right) {
            int mid = left + ((right - left)>>1);
            if (nums[mid] == target) {
                last = mid;
                left = mid + 1;
            } 
            else if (nums[mid] > target) {
                right = mid - 1;
            }
            else {
                left = mid + 1;
            }
        }    
        return {first, last};
    }
};

tips

1. 给开始值first和结束值last初始化为 -1。由此可以统一输出为{first, last}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值