一、贪心算法概述
贪心算法在每一步做出局部最优的贪心选择,这种局部最优选择并不总能获得最优解,但通常能够获得近似最优解。
贪心算法困难的地方就在于证明局部最优解合并成为全局最优解
特点
- 最优子结构性质
- 贪心选择性质
动态规划主要运用于二维或三维问题,而贪心一般是一维问题,他们都具有最优子结构性质,都用于求解最优化问题。
算法 | 基本思想 | 依赖子问题的解 | 解问题的方向 | 最优解 | 复杂程度 |
---|---|---|---|---|---|
贪心算法 | 贪心选择 | 否 | 自顶向下 | 局部最优 | 简单有效 |
动态规划 | 递归定义填表 | 是 | 自底向上 | 整体最优 | 较复杂 |
7.2求解活动安排问题(要求会求解最大相容子集和)
思想:
- 首先将活动按照结束时间递增排列
- 从i=1开始进入队列a,之后各列满足开始时间大于等于队列末尾的活动的结束时间,则进队
- 最后从队头开始出队形成最大兼容活动子集
struct meet { int s;//开始时间 int f;//结束时间 } //会议i的起始时间si和结束时间fi int[] GreedySelector(int n,meet m[],int A[]) //m[] 按m[i].f的非减序排列 { A[1] = 1; //开始只包含1 j = 1; i = 2; //从i(2)开始找与j不相容的会议 while(i<=n) { if(m[i].s>=m[j].f) { A[i] = 1; j=i; } else A[i]=0; i++; } return A;//返回可行解数组 }
例题(并不难,掌握思想即可)
时间复杂度N(n*log2(n))
7.3求解背包问题
注意:贪心算法求解不了0-1背包问题 ,下面的背包问题可以取一部分放进
求解思路
- 首先按照单位价值递减排序(vi/wi)
- 从i=1开始往后拿物品,当最后一个物品全放进去放不下时,就放该物品的一部分。
其实思路很显而易见,选取单位重量下价值最大的物品,再背包价值增长和背包容量消耗之间寻找平衡,这样的做法性价比最高,能得到最优解。
该算法的时间复杂度N(n*log2(n))
7.4求解最优装载问题
求解思路:wi越小,可还是代表1个集装箱树,显然很具有性价比,所以求解思路就是将wi从小到大排序,然后拿取就行。算法时间复杂度位O(nlog2(n))
7.6求解多机调度问题
算法时间复杂度为O(nlog2(n))
7.7哈夫曼编码
求解思路就是从字符对应的权值数组中选择两个权值最小的结合相加,并将其也参加下一次选择的权值数组中,接着在权值数组中进行相同的操作,最后按照左子树0右子树1的方式写出哈夫曼编码
算法采用小根堆,哈夫曼树的平均高度为O(log2(n)),算法时间复杂度为O(nlog2(n))。
7.8求解流水作业调度问题
习题: