洛谷刷题(图的两种应用)

图和树的两种应用主要在于最小生成树和最短路径。

最小生成树是指在连通无向图中,寻找一个涵盖所有顶点的最小生成树,使得此树的边的权重综合最小,在该图中,顶点表示节点,边表示连接这些顶点所要造成的代价。该问题可以应用在很多方面,如交通道路的规划、电网的输送、网络的设计等。

最短路径问题是指在加权有向图或者无向图中,寻找两个指定节点,从一个顶点到另一个节点的最短路径,使得这条路径的权重之和最小。其也有广泛的应用,特别出名的就是导航系统。

综上所述,最小生成树可以理解成为规划问题,而最短路径可以理解成为导航问题。

最小生成树:普利姆、克鲁斯卡尔

 最短路:迪杰斯特拉、(多源汇最短路)弗洛依德,单源负权边时是Bellman Ford算法

最短路算法

首先我们来看最短路算法dijkstra

 dijkstra

步骤:

  1. 首先初始化dist数组,将dist[1]初始化为零,其余皆为正无穷。dist[i]表示i点到源点的最短距离。定义U为当前所有点的集合,集合S为当前已经确定到初始点最短距离的集合
  2. 循环n-1次,选取不在S集合中的点中到初始点距离最小的那个点,用此点更新到达各个点的dist值。而后将此点放入S集合中。

算法的证明:

算法我觉得可以用归纳法证明。首先初始化的时候,dist[1] = 0,正确。

在过程中,选取距离源点最短距离的点作为来更新其他节点到源点的最短距离,更新完后便加入集合S中,反证法:假如加入的点p不是已经确定到初始点最短距离的集合,那么可能有两种情况,第一为源点到已经在S集合的点,再到指定点p,这在之前的过程中已经完成操作,所以不可能是上述情况;第二种,为源点到不在集合S中的点p1,再到p点,因为p1到源点的距离就算在之后跟新也必然大于dist[p],所以也不这种情况可能是。所以假设不成立,点p一定是已经确定到初始点最短距离的集合中的点。

堆优化版的dijkstra算法 

鉴于朴素dijkstra算法时间复杂度较高,当图是稀疏图,空间可能会爆掉,存在开辟数组过大的问题,在模板中,朴素dijkstra适合稠密图,当遇到稀疏图的时候容易造成空间上的浪费,而且可能导致数组过大而不能开辟的问题(int型的变量只能最多开辟1e7个数据元素)。因此有了堆优化版的dijkstra算法。下面先给出算法模板,参考y总:

typedef pair<int, int> PII;

int n;      // 点的数量
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储所有点到1号点的距离
bool st[N];     // 存储每个点的最短距离是否已确定

// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    heap.push({0, 1});      // first存储距离,second存储节点编号

    while (heap.size())
    {
        auto t = heap.top();
        heap.pop();

        int ver = t.second, distance = t.first;

        if (st[ver]) continue;
        st[ver] = true;

        for (int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > distance + w[i])
            {
                dist[j] = distance + w[i];
                heap.push({dist[j], j});
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}


作者:yxc
链接:https://www.acwing.com/blog/content/405/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

Bellman Ford

bellman-ford算法适用于存在负权边的图中,图中可以存在环,此算法也可以用来判断图中是否存在负权回路。 算法时间复杂度为n。

具体过程:

n为点的个数,m为边的个数

  1. 初始化dist数组,初始化dist[1] = 0;
  2. 循环n次(或者题目种要是要求k条边的最短路则循环k次),拷贝backup数组为上一次dist数组的值,并循环m次,读取边结构体中的两个端点以及权重,dist[b] = min(dist[b],backup[a]+w)。
  3. 循环结束后判断点n是否>0x3f3f3f3f/2,若满足条件,则代表图中存在负权回路。若不满足,则返回此dist[n]的值。 

SPFA算法 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值