- 二分查找
- 全排列
- 判断素数(六倍原理)
- 最大公约数(辗转相除法)
1. 二分法查找
题目描述
给出有n个由小到大排好序的非负整数序列,请你编程查找某个元素m是否在这个序列中出现过,如果出现过输出"YES",否则输出"NO"。
输入格式
第一行有一个整数n,
表示序列由n个数组成
第二行有n个整数,从小到大排好序;
第三行一个整数m,有m 个待查找的数。
接下来有m行,每行有一个带查找的数b
输出格式
输出有m行,即对于待查找元素b,如果b在序列中,则输出“YES”,否则输出“NO”(输出时不带双引号)。
样例
输入
5
3 5 6 6 7
3
3
2
5
输出
YES
NO
YES
题解如下
#include<iostream>
#include<cstdio>
using namespace std;
int a[1000005];
//二分函数在此
int erfen(int T[],int gei,int num)
{
int left,right,mid;
left=0;
right=num-1;
while(left<=right)
{
mid=(right+left)/2;
if(gei==T[mid])
return mid;
else if(gei>T[mid])
left=mid+1;
else
right=mid-1;
}
return -1;
}
int main()
{
int n,m,k;
cin>>n;
for(int i=0;i<n;i++)
{
cin>>a[i];
}
cin>>m;
for(int i=0;i<m;i++)
{
cin>>k;
if(erfen(a,k,n)==-1)
{
cout<<"NO"<<"\n";
}
else
{
cout<<"YES"<<"\n";
}
}
return 0;
}
2. 全排列
题目描述
n的全排列,此处省略了若干题目,方便节省时间 。
题解如下
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
int n,a[10];
cin>>n;
for(int i=1;i<=n;i++)
{
a[i-1]=i;
}
//华丽的分割线以表示关键代码
//n的全排列(死记)
do
{
for(int i=0;i<n;i++)
{
cout<<a[i]<<' ';
}
cout<<'\n';
}while(next_permutation(a,a+n));
//分割线到此为止
return 0;
}
3. 六倍原理判断素数
六倍原理:可以从数学上证明,大于6的质数都是在6 的倍数的左右两边
6k附近的数,6k-3,6k-2,6k-1,6k,6k+1,6k+2,6k+3,那么不在6k左右的几个数是
6k-3,6k-2,6k+2,6k+3,第一个和最后一个数是可以整除3,另两个数是可以整除2的,所以他们肯定不是素数。
当然,只是“可能”,如25((6-1)(6-1)),35((6-1)(6+1)),49((6+1)*(6+1)),…
那么,怎么把它们筛掉呢?观察25,35,49这样的数都满足(6k±1)(6p±1)=36kp±6p±6k±1,所以,代码如下:
bool check(int n)
{
if(n==1)
return false;
if(n==2||n==3)
return true;
if(n%6!=5&&n%6!=1)
return false;
for(int i=5;i<=sqrt(n);i+=6)
{
if(n%i==0||n%(i+2)==0)
return false;
}
return true;
}
4. 最大公约数
辗转相除法(欧几里得算法):
int gcd(int a,int b) { return a%b==0?b:gcd(b,a%b); }