查知识点(供自己用的,有很多地方可能不对,忘大佬斧正小蒟蒻)

本文详细介绍了四种基础算法:二分查找法用于有序序列搜索,全排列算法展示了如何生成一个整数序列的所有排列组合,六倍原理结合质数特性用于高效判断素数,以及使用辗转相除法求解最大公约数。通过这些实例,深入理解算法在信息技术领域的应用。
摘要由CSDN通过智能技术生成
  1. 二分查找
  2. 全排列
  3. 判断素数(六倍原理)
  4. 最大公约数(辗转相除法)

1. 二分法查找

题目描述
给出有n个由小到大排好序的非负整数序列,请你编程查找某个元素m是否在这个序列中出现过,如果出现过输出"YES",否则输出"NO"。

输入格式
第一行有一个整数n,
表示序列由n个数组成
第二行有n个整数,从小到大排好序;
第三行一个整数m,有m 个待查找的数。
接下来有m行,每行有一个带查找的数b

输出格式
输出有m行,即对于待查找元素b,如果b在序列中,则输出“YES”,否则输出“NO”(输出时不带双引号)。

样例
输入

5
3 5 6 6 7
3
3
2
5
输出

YES
NO
YES

题解如下


#include<iostream>
#include<cstdio>
using namespace std;
int a[1000005];
//二分函数在此
int erfen(int T[],int gei,int num)
{
	int left,right,mid;
	left=0;
	right=num-1;
	while(left<=right)
	{
		mid=(right+left)/2;
		if(gei==T[mid])
			return mid;
		else if(gei>T[mid])
			left=mid+1;
		else
			right=mid-1;
	}
	return -1;
} 


int main()
{
	int n,m,k;
	cin>>n;
	for(int i=0;i<n;i++)
	{
		cin>>a[i];
	}
	cin>>m;
	for(int i=0;i<m;i++)
	{
		cin>>k;
		if(erfen(a,k,n)==-1)
		{
			cout<<"NO"<<"\n";
		}
		else
		{
			cout<<"YES"<<"\n";
		}
	}
	return 0;
}

2. 全排列

题目描述
n的全排列,此处省略了若干题目,方便节省时间在这里插入图片描述
题解如下

#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
	int n,a[10];
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		a[i-1]=i;
	} 
	//华丽的分割线以表示关键代码
	//n的全排列(死记)
	
	do
	{
		for(int i=0;i<n;i++)
		{
			cout<<a[i]<<' ';
		}
		cout<<'\n';
	}while(next_permutation(a,a+n));
	
	//分割线到此为止
	return 0;
} 

3. 六倍原理判断素数

六倍原理:可以从数学上证明,大于6的质数都是在6 的倍数的左右两边
6k附近的数,6k-3,6k-2,6k-1,6k,6k+1,6k+2,6k+3,那么不在6k左右的几个数是

6k-3,6k-2,6k+2,6k+3,第一个和最后一个数是可以整除3,另两个数是可以整除2的,所以他们肯定不是素数。

当然,只是“可能”,如25((6-1)(6-1)),35((6-1)(6+1)),49((6+1)*(6+1)),…

那么,怎么把它们筛掉呢?观察25,35,49这样的数都满足(6k±1)(6p±1)=36kp±6p±6k±1,所以,代码如下:

bool check(int n)
{
if(n==1)
return false;
if(n==2||n==3)
return true;
if(n%6!=5&&n%6!=1)
return false;
for(int i=5;i<=sqrt(n);i+=6)
{
	if(n%i==0||n%(i+2)==0)
	return false;
}
return true;
}

4. 最大公约数

辗转相除法(欧几里得算法)
int gcd(int a,int b) { return a%b==0?b:gcd(b,a%b); }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值