pandas模块和随堂笔记(1)

本文介绍了Pandas库的基础知识,包括Series和DataFrame数据结构的定义、特点、生成及操作方法。详细讲解了如何创建、访问、修改Series和DataFrame,以及它们的属性和方法,如数据类型、索引、添加和删除列、行操作等,适合初学者了解和掌握Pandas基础操作。
摘要由CSDN通过智能技术生成

Pandas简介

定义

一个开源的python类库,用于数据分析、数据处理、数据可视化

特点

高性能、容易使用的数据结构、容易使用的数据分析工具

pandas数据类型

Series是由相同数据类型组成的一维数组。

DataFrame:二维的表格型数据结构,数据帧(DataFrame)是大小可变的数据结构,每列可以是不同的数据类型(整型、字符串、布尔值等)

面板(Panel)可以由不同的数据类型构成的三维数据结构,Panel是DataFrame的容器

数据结构维数描述数据大小
Series1数据可变, 一维数组,大小不可变,Series是由相同数据类型组成的一维数组。数据可变大小不可变
DataFrame2二维数组,大小可变的表格结构,它含有一组有序的列,每列可以是不同的数据类型(整型、字符串、布尔值等)数据可变大小可变
Panel3数据可变 大小可变的三维数组数据可变大小可变

pandas安装

pip install pandas
pip list

一维数据结构:Series对象

#查看列索引
print(d1.columns)
#查看行索引
print(d1.index)

Series对象的生成

使用Pandas.Series

"""
pandas.Series( data, index, dtype, copy)
data:数据,可以是序列类型,可以是int
index:索引值必须是唯一的,与data的长度相同,默认为np.arange(n)
dtype:数据类型
copy:是否复制数据,默认为false
打印左侧为索引,右侧为数据
"""
#如果全部是int类型,那么打印s1会显示是int类型
s1 = pd.Series([1,2,3,4]) #dtype: int64
print(s1)
#如果什么数据类型都存在,那么打印s1会显示object类型的
s1 = pd.Series([1,"a",0.5,["张三","李四"]])#dtype: object
print(s1)
s1 = pd.Series([1,"a",0.5,["张三","李四"]],index=['a','b','c','d'])
s1 = pd.Series([1,2,3,4],index=['a','b','c','d'],dtype=np.float32)
"""
copy=True后,数据x不会改变,数据s1会改变
copy=False,数据x会改变,数据s1会改变
"""
x=np.array([10,20,30,40])
s1 = pd.Series(x,index=['a','b','c','d'],copy=True)
s1['a']=100
print(s1)
print(x)

从ndarray创建一个Series

x=np.array([10,20,30,40])
s1 = pd.Series(x)
s1 = pd.Series(x,index=['a','b','c','d'])
print(s1)

从字典创建一个Series

"""
由于我们的Series有索引有数据,和我们的字典很像,字典是有key和vaule
"""
#a是索引 100数据
x={'a':100,'b':200,'c':300,'d':400}
s1 = pd.Series(x)
#设置索引
s1 = pd.Series(x,index=['a','b','c','d'])
#如果设置的索引位置换一下呢,数据也会跟着换
s1 = pd.Series(x,index=['a','c','d','b'])
#如果设置的索引,在字典中不存在呢,为nan
s1 = pd.Series(x,index=['a','b','e','f'])
print(s1)

访问Series数据

单个索引获取数据

"""
语法:s1[index]  获取单个数据 
"""
#可以使用默认索引,也可以使用自定义索引
s1 = pd.Series([1,"a",0.5,["张三","李四"]],index=['a','b','c','d'])
print(s1[0])
print(s1['a'])

多个索引获取数据

"""
语法:
s1[list] 获取索引中的数据
s1[index1:index2] 获取从第一个索引到第二个索引的数据,左开右闭
"""
s1 = pd.Series([1,"a",0.5,["张三","李四"]],index=['a','b','c','d'])
print(s1[0:4]) #左开右闭
print(s1[[0,1,2,3]])
print(s1[['a','b','c']]) 
print(s1['a':'b'])#获取两个数据

Series对象的使用

属性和方法说明
axes返回Series索引列表
dtype返回Series的数据类型
empty判断Series是否为空,如果为空,则返回True
ndim返回基础数据的位数,默认为:1
size返回基础数据中的元素个数
values将Series作为ndarray返回
head()返回前n行
tail()返回最后n行
"""
axes   返回Series索引列表                       
dtype   返回Series的数据类型                     
empty   判断Series是否为空,如果为空,则返回True 
ndim    返回基础数据的维度数,默认为:1            
size    返回基础数据中的元素个数                 
values  将Series作为ndarray返回                  
head()  返回前n行                                
tail()  返回最后n行                              
"""
"""
head()返回前n行(观察索引值)。默认数量为5,可以传递自定义数值。
tail()返回最后n行(观察索引值)。默认数量为5,可以传递自定义数值。
"""
s1 = pd.Series([1,"a",0.5,["张三","李四"]],index=['a','b','c','d'])
"""
print(s1.axes)
print(s1.dtype)
print(s1.empty)
print('ndim',s1.ndim)
print(s1.size)
print('type',type(s1))
print('type',type(s1.values))
"""
print('ndim',s1.ndim)
ss1 = s1.tail(3)
print(ss1)
print(type(ss1))
ss = s1.head(3)
print(ss)
print(type(ss))

二维数据结构:DataFrame对象

创建DataFrame对象

"""pandas.DataFrame( data, index, columns, dtype, copy)data	支持多种数据类型,如:ndarray,series,map,lists,dict,constant和另一个DataFrame。index	行标签,如果没有传递索引值,默认值为0,1,2,3,4.......columns	列标签,如果没有传递索引值,默认值为0,1,2,3,4.......dtype	每列的数据类型copy	是否复制数据,默认值为False"""

创建空DataFrame对象

df = pd.DataFrame()print (df)

利用列表创建

#利用单层listx = [1,2,3,4,5,6]df = pd.DataFrame(x,dtype=np.float32)print(df)
#利用双层listx = [    ["tom",10],    ["jack",20],    ["mike",30]]#df = pd.DataFrame(x,columns=['name','age'])#如果是True,那么x数据不改变df = pd.DataFrame(x,columns=['name','age','sex'],copy=True)df['age'] = 100print(df)print(x)
# 利用数据是字典的列表创建x = [    {'a':1,'b':2},    {'a':10,'b':20,'c':30}]#index 行索引  columns列索引df1 = pd.DataFrame(x)print(df1)df1 = pd.DataFrame(x,index=["first","second"])print(df1)#如果没有c,就会默认是nundf1 = pd.DataFrame(x,index=["first","second"],columns=['a','c'])print(df1)

利用字典创建

#利用字典创建DataFrame#a、b是列索引,一定要设置行索引(index),否则报错x = {'a':1,'b':2}d1 = pd.DataFrame(x,index=['row1'])print(d1)
# 字典里面的v是列表类型创建DataFrame#那么默认列索引是name和agex = {    'name':['zs','ls','ww','zl'],    'age':[14,15,16,17]}d1 = pd.DataFrame(x)print(d1)print(d1['age'])

利用Series和字典的结合来创建DataFrame

"""#只有列索引,没有行索引s1 = pd.Series([1,2,3,4,5,6])s2 = pd.Series([100,200,300,400,500])"""#列索引是one,two,行索引是indexs1 = pd.Series([1,2,3,4,5,6],index=['a','b','c','d','e','f'])s2 = pd.Series([100,200,300,400,500],index=['a','b','c','d','e'])x = {    'one':s1,    'two':s2}d1  = pd.DataFrame(x)print(d1)

列的读取

"""语法:df[columns]  查询单列df[[columns] ] 查询多列查询出一列和一列都会进行降维DataFrame-----》Series"""x = [    ["tom",10],    ["jack",20],    ["mike",30]]df = pd.DataFrame(x,columns=['name','age'],index=['row1','row2','row3'])print(df)#根据columns获取列数据print("----------------------")print(df['name'])print(type(df['name'])) #<class 'pandas.core.series.Series'>print("----------------------")print(df[['name','age']])print(type(df[['name','age']])) <class 'pandas.core.frame.DataFrame'>

列的添加

"""语法:df[columns] = 数据切记数据要是同类型的数据,"""x = [    ["tom",10],    ["jack",20],    ["mike",30]]df = pd.DataFrame(x,columns=['name','age'],index=['row1','row2','row3'])print(df)#依据list进行创建的,添加列的时候要是listx1 = ['nan','nv','nan']df["three"] = x1print("---------------------------------------------")print(df)
"""语法:df1[columns]=df1[columns]+df1[columns]"""x = [    {'a':1,'b':2},    {'a':10,'b':20,'c':30}]df1 = pd.DataFrame(x)print(df1)# df1['d'] = {'a':2,'b':3} 报错#数据已经标明列了,不能使用上面的方法,我们可以使用DataFrame中的现有列添加新列df1['d']=df1['a']+df1['b']print("--------------------------------")print(df1)

练习

#把以下数据添加'three'列s1 = pd.Series([1, 2, 3], index=['a', 'b', 'c'])s2 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])s3 = pd.Series([10,20,30], index=['a','b','c'])d = {'one' : s1,      'two' : s2}df = pd.DataFrame(d)print ("通过传递Series添加一个新列:")df['three']=s3print (df)print ("使用DataFrame中的现有列添加新列:")df['four']=df['one']+df['three']print (df)

列的删除

"""删除语法del df[columns] 根据下标进行检索删除,没有返回值df.pop(columns) 根据下标进行检索删除,并返回删除的那一列"""df = pd.DataFrame(d)print ("通过传递Series添加一个新列:")df['three']=s3print (df)del df['one']print (df)df_pop = df.pop('two')print("--------------------------")print (df_pop) """a    1b    2c    3d    4"""print (df)"""   threea   10.0b   20.0c   30.0d    NaN"""

行的读取

使用loc方法

"""语法:loc[index] 查询一行数据扩展loc[index,columns]  精确到行和列,那就是一个数据查询多行和多列(精确到第几行和第几列)loc[[index1,index2,....],[columns1,columns12,.....]] 查询多行和多列(第几行到第几行,第几列到第几列)不是左开右闭loc[index1:index2,columns1:columns2] 使用布尔索引也可以查询多行多列loc[行_布尔索引,列_布尔索引] """x = [    ["tom",10],    ["jack",20],    ["mike",30]]df = pd.DataFrame(x,columns=['name','age'],index=['row1','row2','row3'])print(df)print(df.loc["row1"])#查询一行数据"""name    tomage      10Name: row1, dtype: object"""print("---------------------------------------")#查询一个数据 ,精确到第一行。name那一列的数据print(df.loc["row1","name"])#tomprint("---------------------------------------")print(df.loc[['row1','row2'],"name"]) #查询第一行和第二行的name"""row1     tomrow2    jackName: name, dtype: object"""print("---------------------------------------")print(df.loc[['row1','row2'],['name','age']]) #查询第一行和第二行的name和age"""      name  agerow1   tom   10row2  jack   20"""print("---------------------------------------")print(df.loc['row1',['name','age']]) #第一行的name和age"""name    tomage      10Name: row1, dtype: object"""print("----------------------------------")print(df.loc['row1':'row3','name'])#查询第一行到第三行的name"""row1     tomrow2    jackrow3    mikeName: name, dtype: object"""print("----------------------------------")print(df.loc['row1','name':'age']) #第一行的name到age"""name    tomage      10Name: row1, dtype: object"""print("----------------------------------")print(df.loc['row1':'row3','name':'age'])"""      name  agerow1   tom   10row2  jack   20row3  mike   30"""print("----------------------------------")b = df['age']<20print(b)"""row1     Truerow2    Falserow3    False"""print(df.loc[b])  #获取age小于20的行,列是所有列"""     name  agerow1  tom   10"""print("----------------------------------")print(df.loc[b,'name'])  #获取age小于20的行,列是name"""row1    tomName: name, dtype: object"""

使用df.iloc方法

df.loc方法,根据行、列的标签值查询

df.iloc方法 根据行、列的数字位置查询

"""语法:iloc[num_index] 根据索引位置获取行iloc[num_index1:num_index2] 第几行到第几行,左开右闭iloc[[num_index1,num_index2,.....]] 第几行和第几行iloc[num_index,num_columns] #第几行的第几列iloc[num_index,[num_columns1,num_columns2,....]] 第几行,第几列和第几列iloc[num_index,[num_columns1:num_columns2]] 第几行,第几列到第几列,左开右闭"""x = [    ["tom",10],    ["jack",20],    ["mike",30]]df = pd.DataFrame(x,columns=['name','age'],index=['row1','row2','row3'])print(df)print("------------------------")print(df.iloc[2]) #根据索引位置获取行"""name    mikeage       30Name: row3, dtype: object"""print("------------------------")print(df.iloc[0:2])"""      name  agerow1   tom   10row2  jack   20"""print("------------------------")print(df.iloc[[0,2]])"""      name  agerow1   tom   10row3  mike   30"""print("------------------------")print(df.iloc[2,0]) #mikeprint("------------------------")print(df.iloc[2,[0,1]]) """------------------------name    mikeage       30Name: row3, dtype: object"""print("------------------------")print(df.iloc[2,0:1]) """name    mikeName: row3, dtype: object"""

使用切片读取

"""df[num_index1:num_index2] 第几行到第几行 左开右闭---切片df[label_index1:label_index2] 第几行到第几行,左开右开"""x = [    ["tom",10],    ["jack",20],    ["mike",30]]df = pd.DataFrame(x,columns=['name','age'],index=['row1','row2','row3'])print(df)print("-----------------------------------------")print(df[0:2])"""-----------------------------------------      name  agerow1   tom   10row2  jack   20"""print("-----------------------------------------")print(df['row1':'row3'])"""-----------------------------------------      name  agerow1   tom   10row2  jack   20row3  mike   30"""

行的添加

"""在末尾追加一行,返回一个新对象 df.append(other,ignore_index= False,verify_integrity = False,        sort = False)other:要附加的数据,DataFrame或者Series等类型ignore_index:如果是True,则不使用索引标签,默认falseverify_integrity:如果是True,在创建于重复项的索引时,引发valueError,默认时falsesort:如果原数据和添加数据的列没有对齐,则对列进行排序,不建议排序"""x = [    ["tom",10],    ["jack",20],    ["mike",30]]df = pd.DataFrame(x,columns=['name','age'],index=['row1','row2','row3'])print(df)print("-----------------------------------------")y = [    ["zs",10],    ["ls",20],    ["ww",30]]df1 = pd.DataFrame(y,columns=['name','age'],index=['row1','row2','row3'])df2 = df.append(df1)print(df2)"""-----------------------------------------      name  agerow1   tom   10row2  jack   20row3  mike   30row1    zs   10row2    ls   20row3    ww   30"""print("-------------ignore_index=True,则不使用索引标签----------------------------")df1 = pd.DataFrame(y,columns=['name','age'],index=['row1','row2','row3'])df2 = df.append(df1,ignore_index=True)print(df2)"""-------------ignore_index=True,则不使用索引标签----------------------------   name  age0   tom   101  jack   202  mike   303    zs   104    ls   205    ww   30"""print("------verify_integrity=True,在创建于重复项的索引时,引发valueError-------")df1 = pd.DataFrame(y,columns=['name','age'],index=['row1','row2','row3'])df2 = df.append(df1,verify_integrity=True)print(df2)

行的删除

"""df1= df.drop(index) #删除某行,返回一个新数据"""x = [    ["tom",10],    ["jack",20],    ["mike",30]]df = pd.DataFrame(x,columns=['name','age'],index=['row1','row2','row3'])print(df)print("--------------------------")df1= df.drop('row1')print(df1)

DataFrame的属性和方法

属性和方法描述
T转置行和列
axes返回一个列,行轴标签和列轴标签作为唯一的成员
dtypes返回此对象中的数据类型
empty如果DataFrame为空,则返回为True,任何轴的长度都为0
ndim数组维度大小,默认为2维
shape返回表示DataFrame的维度的元组
sizeDataFrame中的元素个数
values将DataFrame中的实际数据作为NDarray返回
head()返回开头n行
tail()返回最后n行
s1 =pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack'])s2 = pd.Series([25,26,25,23,30,29,23])s3 = pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])d = {'Name':s1,   'Age':s2,   'Rating':s3}#生成一个DataFrame对象df = pd.DataFrame(d)print (df)"""    Name  Age  Rating0    Tom   25    4.231  James   26    3.242  Ricky   25    3.983    Vin   23    2.564  Steve   30    3.205  Minsu   29    4.606   Jack   23    3.80"""print("--------df.T返回DataFrame的转置,行和列将交换----------")df_T = df.Tprint(df_T)"""--------df.T返回DataFrame的转置,行和列将交换----------           0      1      2     3      4      5     6Name     Tom  James  Ricky   Vin  Steve  Minsu  JackAge       25     26     25    23     30     29    23Rating  4.23   3.24   3.98  2.56    3.2    4.6   3.8"""print("--------df.axes返回行轴标签和列轴标签列表----------")df_axes = df.axesprint(df_axes)#[RangeIndex(start=0, stop=7, step=1), Index(['Name', 'Age', 'Rating'], dtype='object')]print("--------df.dtypes返回每列的数据类型----------")df_dtype = df.dtypesprint(df_dtype)"""--------df.dtypes返回每列的数据类型----------Name       objectAge         int64Rating    float64dtype: object"""print("--------df.empty返回布尔值,表示对象是否为空,返回True表示对象为空----------")df_empty = df.emptyprint(df_empty) #Falseprint("--------df.ndim返回对象的维数----------")df_ndim = df.ndimprint(df_ndim )  #2
print("-----df.shape返回表示DataFrame的维度的元组。元组(a,b),其中a表示行数,b表示列数----")df_shape = df.shapeprint(df_shape  )  #(7, 3)print("-----df.size返回DataFrame中的元素个数。----")df_size = df.sizeprint(df_size  )  #21print("-----df.values将DataFrame中的实际数据作为NDarray返回。----")df_values = df.valuesprint(df_values)  """-----df.values将DataFrame中的实际数据作为NDarray返回。----[['Tom' 25 4.23] ['James' 26 3.24] ['Ricky' 25 3.98] ['Vin' 23 2.56] ['Steve' 30 3.2] ['Minsu' 29 4.6] ['Jack' 23 3.8]]"""print("-----df.head(n)返回前n行(观察索引值)。默认数量为5----")df_head = df.head(2)print(df_head)  """-----df.head(n)返回前n行(观察索引值)。默认数量为5----    Name  Age  Rating0    Tom   25    4.231  James   26    3.24"""print("-----df.tail(n)返回后n行(观察索引值)。默认数量为5----")df_tail = df.tail(2)print(df_tail)  """-----df.tail(n)返回后n行(观察索引值)。默认数量为5----    Name  Age  Rating5  Minsu   29     4.66   Jack   23     3.8"""

随堂笔记

pandas.Series(data,index,dtype,copy)

“”"
data:数据,可以是序列类型,可以是int
index:索引值必须是唯一的,与data的长度相同,默认为np.arange(n)
dtype:数据类型
copy:是否复制数据,默认为False
打印左侧为索引,右侧为数据
“”"
import pandas as pd
import numpy as np
‘’’
a=np.array([1,2,3,4,5])
s1=pd.Series(a,index=[‘a’,‘b’,‘c’,‘d’,‘e’],copy=False)
print(s1)
print(a)

修改数据,把1----->100

print("---------------------")
s1[‘a’]=100
print(s1)
print(a) #[100 2 3 4 5]
‘’’
‘’’
a=[1,2,3,4,5]
s1=pd.Series(a)

np01=np.array([1,2,3])
s2=pd.Series(np01)
‘’’

字典={k:v}

“”"
k:在series中是index
“”"
‘’’
d1={‘zs’:18,‘ls’:20}
s3=pd.Series(d1)
print(s3)
print(s3[‘zs’]) #18

a=[18,20]
s4=pd.Series(a,index=[‘zs’,‘ls’])
‘’’

语法:s1[index] 获取单个数据

‘’’

可以使用默认索引,也可以使用自定义索引

d1={‘zs’:20,‘ls’:30,‘ww’:40,‘ch’:20,‘zl’:30}
s1=pd.Series(d1)
print(s1[‘zs’]) #使用自定义索引 20
print(s1[0]) #使用默认索引 20
‘’’

语法:

“”"
s1[list] 获取索引中的数据
s1[index1:index2] 获取从第一个索引到第二个索引的数据,左开右闭
数字索引是左开右闭,标签索引是左开右开
“”"
‘’’
print(s1[‘zs’:‘ch’]) #左开右开

print(s1[[‘zs’,‘ch’,‘ww’]])

print(s1[0:3]) #左开右闭

print(s1[[0,3,4]])
‘’’

语法:

“”"
axes 返回Series索引列表
dtype 返回Series的数据类型
empty 判断Series是否为空,如果为空,则返回True
ndim 返回基础数据的维度数,默认为:1
size 返回基础数据中的元素个数
values 将Series作为ndarray返回
head() 返回前n行
tail() 返回最后n行
“”"
“”"
head() 返回前n行(观察索引值)。默认数量为5,可以传递自定义数值
tail() 返回最后n行(观察索引值)。默认数量为5,可以传递自定义数值
“”"

可以使用默认索引,也可以使用自定义索引

d1={‘zs’:20,‘ls’:30,‘ww’:40,‘ch’:20,‘zl’:30}
s1=pd.Series(d1)
#print(s1.axes) #[Index([‘zs’, ‘ls’, ‘ww’, ‘ch’, ‘zl’], dtype=‘object’)]
#print(s1.dtype) #int64
#print(s1.empty) #False
#print(s1.ndim) #1
#print(s1.size) #5
#print(s1.values) #[20 30 40 20 30]
#print(type(s1.values)) #<class ‘numpy.ndarray’>
#print(s1.head(3))
#print(s1.tail(2))

pandas.DataFrame(data,index,columns,dtype,copy)

“”"
data 支持多种数据类型,如:ndarray,series,map,lists,dict,constant和另一个DataFrame
index 行标签,如果没有传递索引值,默认值为0,1,2,3,4…
columns 列标签,如果没有传递索引值,默认值为0,1,2,3,4…
dtype 每列的数据类型
copy 是否复制数据,默认值为False
“”"
‘’’
np01=np.arange(20).reshape(4,5)
df1=pd.DataFrame(np01,index=[‘a’,‘b’,‘c’,‘d’],columns=[‘name’,‘age’,‘sex’,‘hobbit’,‘address’],dtype=np.float32)
print(df1)
‘’’

利用单层list

#数据变成行数据
‘’’
x=[1,2,3,4,5]
df2=pd.DataFrame(x)
#print(df2)
‘’’

利用双层list

‘’’
x=[
[‘zs’,20],
[‘ls’,30],
[‘ch’,40]
]
df3=pd.DataFrame(x,columns=[‘name’,‘age’])
#print(df3)
‘’’

利用数据是字典的列表创建

“”"
1.k变成列标签
2.没有数据的用NaN
“”"
‘’’
x=[
{‘a’:20,‘b’:30},
{‘a’:100,‘b’:200,‘c’:400}
]
df4=pd.DataFrame(x)
print(df4)
‘’’

利用字典创建DataFrame

#a,b是列索引,一定要设置行索引(index),否则报错
x={‘馒头’:1,‘包子’:1.5,‘豆浆’:2,‘倔酱面’:17}
df1=pd.DataFrame(x,index=[‘价格’])
#print(df1)
‘’’
df1=pd.DataFrame(x)
print(df1) #ValueError: If using all scalar values, you must pass an index
‘’’
x={
‘食品’:[‘馒头’,‘大米’,‘包子’],
‘价格’:[1,2,1.5],
}
df2=pd.DataFrame(x)
#print(df2)

s1=pd.Series([‘馒头’,‘大米’,‘包子’])
s2=pd.Series([1,2,1.5])
x={
‘食品’:s1,
‘价格’:s2
}
df3=pd.DataFrame(x)
#print(df3)

查询列

“”"
df[columns_label] 查询单列
df[[columns_label]] 查询多列
查询出一列会进行降维DataFrame-------> Series
查询多列不会进行降维
“”"
s=df3[‘食品’]
#print(s)
#print(type(s)) #<class ‘pandas.core.series.Series’>

s2=df3[[‘食品’,‘价格’]]
#print(s2)
#print(type(s2)) #<class ‘pandas.core.frame.DataFrame’>
#字典里面的v是列表

添加列

“”"
语法:df[columns]=数据
切记数据要是同类型的数据

df1[columns]=df1[columns]+df1[columns]
“”"

s1=pd.Series([‘馒头’,‘大米’,‘包子’])
s2=pd.Series([1,2,1.5])
x={
‘食品’:s1,
‘价格’:s2
}
df3=pd.DataFrame(x)
#print(df3)

a=[‘好吃’,‘多’,‘馅多’]
df3[‘评价’]=a
#print(df3)
#print("-------------------------------")
df3[‘详细评价’]=df3[‘食品’]+df3[‘评价’]
#print(df3)

删除语法

“”"
del df[columns] 根据下标进行检索删除,没有返回值
df.pop(columns) 根据下标进行检索删除,并返回删除的那一列
“”"
‘’’
del df3[‘评价’]
print(df3)

a=df3.pop(‘详细评价’)
print(‘a’,a) #要删除的那一列数据
print(‘df3’,df3) #删除后的数据
‘’’

s1=pd.Series([‘馒头’,‘大米’,‘包子’,‘大盘鸡’,‘麻辣烫’,‘鱼粉’,‘热干面’],index=[‘row1’,‘row2’,‘row3’,‘row4’,‘row5’,‘row6’,‘row7’])
s2=pd.Series([1,2,1.5,12,16,10,8],index=[‘row1’,‘row2’,‘row3’,‘row4’,‘row5’,‘row6’,‘row7’])
s3=pd.Series([‘Y’,‘Y’,‘Y’,‘Y’,‘Y’,‘Y’,‘Y’],index=[‘row1’,‘row2’,‘row3’,‘row4’,‘row5’,‘row6’,‘row7’])
x={
‘食品’:s1,
‘价格’:s2,
‘评价’:s3
}
df3=pd.DataFrame(x)
#print(df3)

索引语法:

“”"
loc[自定义索引(标签索引)]
iloc[默认索引(数字索引)]
语法:
loc[index] 查询一行数据
扩展
loc[index,columns] 精确到行和列,那就是一个数据
查询多行和多列(精确到第几行和第几列)
loc[[index1,index2,…],[columns1,columns12,…]]
查询多行和多列(第几行到第几行,第几列到第几列)
不是左开右闭
loc[index1:index2,columns1:columns2]
使用布尔索引也可以查询多行多列
loc[行_布尔索引,列_布尔索引]
“”"
#print(df3.loc[‘row1’])
#print(df3.loc[‘row4’,‘食品’]) #大盘鸡
#print(df3.loc[[‘row1’,‘row3’],[‘食品’,‘价格’]])
#print(df3.loc[[‘row1’,‘row3’],‘食品’])
#print(df3.loc[‘row1’,[‘食品’,‘价格’]])

#print(df3.loc[‘row1’:‘row4’,‘食品’:‘价格’])
#print(df3.loc[[‘row1’,‘row3’],‘食品’:‘价格’])

#index_bool=[True,False,False,False,False,True,True]
#col_bool=[True,True,False]
#print(df3.loc[index_bool,col_bool])

#b=df3[‘价格’] > 8
#print(df3.loc[b])

查询行的,iloc[数字索引]

“”"
语法:
iloc[num_index] 根据索引位置获取行
iloc[num_index1:num_index2] 第几行到第几行,左开右闭
iloc[[num_index1,num_index2,…]] 第几行和第几行
iloc[num_index,num_columns] #第几行的第几列
iloc[num_index,[num_columns1,num_columns2,…]] 第几行,第几列和第几列
iloc[num_index,[num_columns1:num_columns2]] 第几行,第几列到第几列,左开右闭
iloc[[num_index1,num_index2,…],[num_columns1,num_columns2,…]]
iloc[num_index1:num_index2,[num_columns1:num_columns2]]
“”"
#print(df3.iloc[0])
#print(df3.iloc[0:4])
#print(df3.iloc[[0,3]])
#print(df3.iloc[6,0]) #热干面
#print(df3.iloc[6,0:2])
#print(df3.iloc[6,[0,2]])
#print(df3.iloc[[0,2,4],[0,2]])

df[ ]语法:

“”"
df[num_index1:num_index2] 第几行到第几行 左开右闭—切片
df[label_index1:label_index2] 第几行到第几行 左开右开
“”"
df3[0:4] #第一行到第五行,但是第五行取不到
df3[‘row1’:‘row4’] #第一行到第四行,第四行能取到

在末尾追加一行,返回一个新对象

“”"
df.append(other,ignore_index= False,verify_integrity= False,sort = False)
other:要附加的数据,DataFrame或者Series等类型
ignore_index:如果是True,则不使用索引标签,默认false
verify_integrity:如果是True,在创建于重复项的索引时,引发valueError,默认是false
sort:如果原数据和添加数据的列没有对齐,则对列进行排序,不建议排序
“”"
s1=pd.Series([‘zs’,‘ls’,‘ww’],index=[‘row1’,‘row2’,‘row3’])
s2=pd.Series([10,20,30],index=[‘row1’,‘row2’,‘row3’])
x={
‘name’:s1,
‘age’:s2
}
df1=pd.DataFrame(x)

s3=pd.Series([‘大黄’,‘狗蛋’,‘铁蛋’,‘富贵’],index=[‘row1’,‘row2’,‘row3’,‘row4’])
s4=pd.Series([10,10,10,np.NaN],index=[‘row1’,‘row2’,‘row3’,‘row4’])
x1={
‘name’:s3,
‘age’:s4
}
df2=pd.DataFrame(x1)
#print(df2)
“”"

T转置行和列
axes返回一个列,行轴标签和列轴标签作为唯一的成员
dtypes返回此对象中的数据类型
empty如果DataFrame为空,则返回为True,任何轴的长度都为0
ndim数组维度大小,默认为2维
shape返回表示DataFrame的维度的元组
sizeDataFrame中的元素个数
values将DataFrame中的实际数据作为NDarray返回
head()返回开头n行
tail()返回最后n行

“”"
#print(df2.head(2))
#print(df2.tail(2))
“”"
name age
row1 大黄 10
row2 狗蛋 10
name age
row3 铁蛋 10
row4 富贵 10
“”"
#print("-----values–把真正的数据转换成ndarray的形式输出")
#print(df2.values)
#print(type(df2.values))
“”"
-----values–把真正的数据转换成ndarray的形式输出
[[‘大黄’ 10]
[‘狗蛋’ 10]
[‘铁蛋’ 10]
[‘富贵’ 10]]
<class ‘numpy.ndarray’>
“”"
#print(’----size—元素个数–’)
#print(df2.size)
“”"
----size—元素个数–
8
“”"
#print(’—shape—(行,列)’)
#print(df2.shape)
“”"
—shape—(行,列)
(4, 2)
“”"
#print("—ndim—维度数")
#print(df2.ndim) #2
“”"
—ndim—维度数
2
“”"
#print("----empty–")
#print(df2.empty)
“”"
----empty–
False
“”"
#print("----dtypes----每一列的数据类型–")
#print(df2.dtypes)
“”"
----dtypes----每一列的数据类型–
name object
age int64
dtype: object
“”"
#print(’------axes—获取行和列的索引’)
#print(df2.axes)
“”"
----axes----获取行和列的索引
[Index([‘row1’, ‘row2’, ‘row3’, ‘row4’], dtype=‘object’),
Index([‘name’, ‘age’], dtype=‘object’)]
“”"

语法:

“”"

count()非空数据的数量
sum()所有值之和
mean()所有值的平均值
median()所有值的中位数
mod()值的模
std()值的标准偏差
min()所有值中的最小值
max()所有值中的最大值
abs()绝对值
prod()数组元素的乘积
cumsum()累积总和
cumprod()累计乘积
cumprod—累计求积

“”"
#print(’—cumprod—累计求积–’)
#print(df2[‘age’].cumprod())
“”"
—cumprod—累计求积–
row1 10.0
row2 100.0
row3 1000.0
row4 NaN
Name: age, dtype: float64
“”"

cumsum–累计求和

#print(’-----cumsum–累计求和–’)
#print(df2.cumsum())
“”"
-----cumsum–累计求和–
name age
row1 大黄 10.0
row2 大黄狗蛋 20.0
row3 大黄狗蛋铁蛋 30.0
row4 大黄狗蛋铁蛋富贵 NaN
“”"

prod----乘积

#print(’----prod----乘积–’)
#print(df2[‘age’].prod())
“”"
----prod----乘积–
1000.0
“”"

abs—绝对值

#print(’----abs—绝对值—’)
#print(df2[‘age’].abs())
“”"
----abs—绝对值—
row1 10.0
row2 10.0
row3 10.0
row4 NaN
Name: age, dtype: float64
“”"

max—最大值

#print(’----max—最大值–’)
#print(df2.max())
“”"
----max—最大值–
name 铁蛋
age 10.0
dtype: object
“”"

min----最小值

#print(’—min----最小值—’)
#print(df2.min())
“”"
—min----最小值—
name 大黄
age 10.0
dtype: object
“”"

std—标准差

#print(’----std—标准差—’)
#print(df2.std())
“”"
age 0.0
dtype: float64
“”"

mod(n)—取余

#print("----mod(n)—取余—")
#print(df2[‘age’].mod(2))
“”"
----mod(n)—取余—
row1 0.0
row2 0.0
row3 0.0
row4 NaN
Name: age, dtype: float64
“”"

median—中位数

#print(’—median—中位数–’)
#print(df2.median())
“”"
age 10.0
dtype: float64
“”"

mean----平均值

#print(’—mean----平均值—’)
#print(df2.mean())
“”"
age 10.0
dtype: float64
“”"

sum—求和—每一列的和

#print(’—sum—求和—每一列的和’)
#print(df2.sum())
“”"
—sum—求和—每一列的和
name 大黄狗蛋铁蛋富贵
age 30.0
dtype: object
“”"

count—非空计数

#print(’—count—非空计数’)
#print(df2.count())
“”"
—count—非空计数
name 4
age 3
dtype: int64
“”"

append(ignore_index)

‘’’
print("---------------------------")
df3=df1.append(df2,verify_integrity=False)
print(df3)
print("------------append(ignore_index)---------------")
df3=df1.append(df2,ignore_index=True)
print(df3)
‘’’

删除某行,返回一个新数据

“”"
df1=df.drop(index) #删除某行,返回一个新数据
index只能是索引标签(自定义索引)
“”"
df3=df2.drop(‘row4’)
#print(df3)

函数是用来计算有关DataFrame 列的统计信息的摘要

“”"
describe(percentiles=None,include=None,exclude=None,datetime_is_numeric=False,)

percentiles:设置分位数,默认是[.25,.5,.75],
也就是返回 25%,50%,75%数据量时的数字
include:计算那些数据类型的统计量
object -汇总字符串列
number -汇总数字列
all -将所有列汇总在一起(不应将其作为列表值传递)
exclude:不计算那些数据类型的统计量,参数和上面一样,没有all
datetime_is_numeric:默认值为False。设置为True 可将日期时间数据视为数字
“”"
a=df2.describe(exclude=‘number’)
#print(a)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值