自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 回头看SE注意力机制及其PyTorch实现

2017年,Hu等人发表了《Squeeze-and-Excitation Networks》,在文中创新性地提出了一种基于特征通道关系的轻量化模块,并将其称之为SE(Squeeze-and-Excitation) block,即SE注意力机制。这一模块为当时已经达到SOTA(state-of-the-art)水平的网络模型带来了进一步的效果提升,凭借其出色的效果和即插即用的特性,SE注意力机制成为了软注意力机制中的经典。

2023-05-14 14:38:52 1226 1

原创 回头看ResNet及其PyTorch实现

2015年,何恺明等人在《Deep Residual Learning for Image Recognition》中提出了ResNet的新型网络结构,ResNet一经提出便以接连斩获ImageNet目标检测、图像分类,COCO目标检测、图像分割比赛的多项冠军,为深层网络模型的训练开辟了新的思路。

2023-04-24 19:04:21 128 1

原创 回头看AlexNet及其PyTorch实现

作为深度学习奠基作之一,《ImageNet Classification with Deep Convolutional Neural Networks》由Alex Krizhevsky等人在2012年发表,AlexNet就此横空出世,并以巨大的优势赢得了2012年ImageNet图像识别挑战赛冠军,一举打破了当时计算机视觉研究的现状。

2023-04-22 16:25:44 128 1

原创 浅谈神经网络误差反向传播(BP)算法

通俗易懂浅谈神经网络误差反向传播(BP)算法

2023-01-12 17:14:53 1380

原创 Learning Memory-guided Normality for Anomaly Detection 论文解析——模型介绍

Learning Memory-guided Normality for Anomaly Detection模型介绍本文为对 Learning Memory-guided Normality for Anomaly Detection一文所提出的创新模型的介绍。如图所示,该模型为对传统卷积自编码器的优化,主要模块可分为三个部分:Encoder、Memory Module和Decoder。Network architectureEncoder and Decoder本文在U-Net的基础上对Enc

2021-11-09 23:39:23 1703

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除