Python数据分析
文章平均质量分 64
Python数据分析
hyk今天写算法了吗
西南大学计科专业学硕,欢迎各位相互学习交流。
展开
-
天池学习赛——基于Apriori算法的商品频繁项集与关联规则的挖掘
赛题以购物篮分析为背景,要求选手对品牌的历史订单数据,挖掘频繁项集与关联规则。通过这道赛题,鼓励学习者利用订单数据,为企业提供销售策略,产品关联组合,为企业提升销量的同时,也为消费者提供更适合的商品推荐。数据源:order.csv,product.csv,customer.csv,date.csv ,分别为订单表,产品表,客户表,日期表现在需要你使用关联分析(比如Apriori算法) 挖掘订单中的频繁项集及关联规则说明:1)频繁项集、关联规则的计算会用到支持度、置信度、提升度等指标,2)频繁项集:即大原创 2022-07-01 17:17:41 · 707 阅读 · 0 评论 -
pandas中str内置函数
1、cat() 拼接字符串例子:>>> Series(['a', 'b', 'c']).str.cat(['A', 'B', 'C'], sep=',')0 a,A1 b,B2 c,Cdtype: object>>> Series(['a', 'b', 'c']).str.cat(sep=',')'a,b,c'>>> Series(['a', 'b']).str.cat([['x', 'y'], ['1', '2']], sep=','原创 2022-02-12 20:56:02 · 1609 阅读 · 0 评论 -
pd.to_numeric
目录作用参数描述errors中参数的解释downcast中参数的意义实例作用作用:将参数转换为数字类型。默认返回dtype为float64或int64, 具体取决于提供的数据。使用downcast参数获取其他dtype。参数描述参数 描述args 接受scalar, list, tuple, 1-d array, or Series类型errors 有3种类型{‘ignore’, ‘raise’, ‘coerce’}, 默认为‘raise’downcast {‘integer’,原创 2022-02-12 20:44:07 · 5932 阅读 · 0 评论 -
数据分析——RFM模型
这里写目录标题一、RFM模型概述R值:最近一次消费(Recency)F值:消费频率(Frequency)M值:消费金额(Monetary)二、基于RFM模型的实践应用1、基于RFM模型进行客户细分2、通过RFM模型评分后输出目标用户一、RFM模型概述RFM模型是网点衡量当前用户价值和客户潜在价值的重要工具和手段。RFM是Rencency(最近一次消费),Frequency(消费频率)、Monetary(消费金额),三个指标首字母组合,如图所示:R值:最近一次消费(Recency)消费指的是客户在店原创 2022-01-15 16:13:01 · 33189 阅读 · 6 评论 -
Python数据分析——numpy与pandas数据合并
import numpy as npimport pandas as pdfrom pandas import Series,DataFrame# Numpy数据合并arr = np.random.randint(0,10,(3,3))arr# concatenate((a1, a2, ...), axis=0, out=None)np.concatenate((arr,arr)) # 默认axis = 0,按列np.concatenate((arr,arr),axis = 1)# 按原创 2021-05-22 10:21:15 · 920 阅读 · 0 评论 -
Python数据分析——Matplotlib
基础语法plt.plot(x,y,format_string,**kwargs)说明:----x:x轴数据,列表或数组,可选----y:y轴数据,列表或数组,可选----format_string:控制曲线的格式字符串,可选----**kwargs:第二组或更多,(x,y,format_string)plot函数的一般的调用形式:单条线:plot([x], y, [fmt], data=None, **kwargs)多条线一起画plot([x], y, [fmt], [x2], y原创 2021-05-29 16:46:29 · 252 阅读 · 0 评论