【黑马点评】6 秒杀优化并用Apifox添加优惠券信息

6 秒杀优化

6.1 秒杀优化-异步秒杀思路

视频里的测试可以参考以下博客:【黑马点评】使用RabbitMQ实现消息队列–3.使用Jmeter压力测试,导入批量token,测试异步秒杀下单

我们来回顾一下下单流程

当用户发起请求,此时会请求nginx,nginx会访问到tomcat,而tomcat中的程序,会进行串行操作,分成如下几个步骤

1、查询优惠卷

2、判断秒杀库存是否足够

3、查询订单

4、校验是否是一人一单

5、扣减库存

6、创建订单

在这六步操作中,又有很多操作(1.3.6)是要去操作数据库的,而且还是一个线程串行执行, 这样就会导致我们的程序执行的很慢,所以我们需要异步程序执行,那么如何加速呢?

在这里笔者想给大家分享一下课程内没有的思路,看看有没有小伙伴这么想,比如,我们可以不可以使用异步编排来做,或者说我开启N多线程,N多个线程,一个线程执行查询优惠卷,一个执行判断扣减库存,一个去创建订单等等,然后再统一做返回,这种做法和课程中有哪种好呢?答案是课程中的好,因为如果你采用我刚说的方式,如果访问的人很多,那么线程池中的线程可能一下子就被消耗完了,而且你使用上述方案,最大的特点在于,你觉得时效性会非常重要,但是你想想是吗?并不是,比如我只要确定他能做这件事,然后我后边慢慢做就可以了,我并不需要他一口气做完这件事,所以我们应当采用的是课程中,类似消息队列的方式来完成我们的需求,而不是使用线程池或者是异步编排的方式来完成这个需求

在这里插入图片描述

优化方案:我们将耗时比较短的逻辑判断放入到redis中,比如是否库存足够,比如是否一人一单,这样的操作,只要这种逻辑可以完成,就意味着我们是一定可以下单完成的,我们只需要进行快速的逻辑判断,根本就不用等下单逻辑走完,我们直接给用户返回成功, 再在后台开一个线程,后台线程慢慢的去执行queue里边的消息,这样程序不就超级快了吗?而且也不用担心线程池消耗殆尽的问题,因为这里我们的程序中并没有手动使用任何线程池,当然这里边有两个难点

第一个难点是我们怎么在redis中去快速校验一人一单,还有库存判断

第二个难点是由于我们校验和tomct下单是两个线程,那么我们如何知道到底哪个单他最后是否成功,或者是下单完成,为了完成这件事我们在redis操作完之后,我们会将一些信息返回给前端,同时也会把这些信息丢到异步queue中去,后续操作中,可以通过这个id来查询我们tomcat中的下单逻辑是否完成了。

在这里插入图片描述

我们现在来看看整体思路:当用户下单之后,判断库存是否充足只需要导redis中去根据key找对应的value是否大于0即可,如果不充足,则直接结束,如果充足,继续在redis中判断用户是否可以下单,如果set集合中没有这条数据,说明他可以下单,如果set集合中没有这条记录,则将userId和优惠卷存入到redis中,并且返回0,整个过程需要保证是原子性的,我们可以使用lua来操作

当以上判断逻辑走完之后,我们可以判断当前redis中返回的结果是否是0 ,如果是0,则表示可以下单,则将之前说的信息存入到到queue中去,然后返回,然后再来个线程异步的下单,前端可以通过返回的订单id来判断是否下单成功。

在这里插入图片描述

6.2 秒杀优化-Redis完成秒杀资格判断

需求:

  • 新增秒杀优惠券的同时,将优惠券信息保存到Redis中

  • 基于Lua脚本,判断秒杀库存、一人一单,决定用户是否抢购成功

  • 如果抢购成功,将优惠券id和用户id封装后存入阻塞队列

  • seckillVoucher
    
  • 开启线程任务,不断从阻塞队列中获取信息,实现异步下单功能

    在这里插入图片描述

在此之前,先使用apifox向数据库中添加一条优惠券信息

如下:POST请求:http://localhost:8081/voucher/seckill

Body如下

{
    "shopId": 1,
    "title": "100元代金券",
    "subTitle": "周一至周五均可使用",
    "rules": "全场通用\\n无需预约\\n可无限叠加\\不兑现、不找零\\n仅限堂食",
    "payValue": "8000",
    "actualValue": "10000",
    "type": 1,
    "stock": 100,
    "beginTime": "2024-09-30T19:31:00",
    "endTime": "2024-10-10T23:31:00"
}

在这里插入图片描述

6.2.1 新增秒杀优惠券的同时,优惠券信息保存到Redis中

修改VoucherServiceImpl

@Override
@Transactional
public void addSeckillVoucher(Voucher voucher) {
    // 保存优惠券
    save(voucher);
    // 保存秒杀信息
    SeckillVoucher seckillVoucher = new SeckillVoucher();
    seckillVoucher.setVoucherId(voucher.getId());
    seckillVoucher.setStock(voucher.getStock());
    seckillVoucher.setBeginTime(voucher.getBeginTime());
    seckillVoucher.setEndTime(voucher.getEndTime());
    seckillVoucherService.save(seckillVoucher);
    // 保存秒杀库存到Redis中
    //SECKILL_STOCK_KEY 这个变量定义在RedisConstans中
    //private static final String SECKILL_STOCK_KEY ="seckill:stock:"
    stringRedisTemplate.opsForValue().set(SECKILL_STOCK_KEY + voucher.getId(), voucher.getStock().toString());
}

6.2.2 实现lua脚本,判断秒杀库存、一人一单,决定用户是否抢购成功

在resources下新建lua文件 seckill.lua

---
--- Generated by EmmyLua(https://github.com/EmmyLua)
--- Created by 华祥.
--- DateTime: 2024/9/30 19:58
---
-- 1. 参数列表
-- 1.1 优惠券id
local voucherId = ARGV[1]
-- 1.2 用户id
local userId = ARGV[2]
-- 1.3 订单id
local orderId = ARGV[3]
-- 2. 数据key
--2.1 库存key
local stockKey = 'seckill:stock:' .. voucherId
--2.2 订单key
local orderKey = 'seckill:order:' .. voucherId
--3.脚本业务
--3.1 判断库存是否充足 get stockKey
if(tonumber(redis.call('get',stockKey)) <= 0) then
    --3.2 库存不足 返回1
    return 1
end
--3.2 判断用户是否下单SISMEMBER orderKey userId
if(redis.call('sismember', orderKey,userId)==1) then
    --3.3 存在,说明是重复下单,返回2
    return 2
end
--3.4 扣库存 incrby stockKey -1
redis.call('incrby', stockKey,-1)
--3.5 下单(保存用户)sadd orderKey userId
redis.call('sadd',orderKey,userId)
--3.6 发送消息到队列中 XADD stream.orders * k1 v1 k2 v2
--redis.call('xadd', 'stream.orders', '*', 'userId', userId, 'voucherId', voucherId, 'id', orderId)
return 0

修改VoucherOrderServiceImpl中的seckillVoucher方法,同时加上脚本

    private static final DefaultRedisScript<Long> SECKILL_SCRIPT;
    static {
        SECKILL_SCRIPT = new DefaultRedisScript<>();
        SECKILL_SCRIPT.setLocation(new ClassPathResource("seckill.lua"));
        SECKILL_SCRIPT.setResultType(Long.class);
    }

@Override
public Result seckillVoucher(Long voucherId) {
    //获取用户
    Long userId = UserHolder.getUser().getId();
    long orderId = redisIdWorker.nextId("order");
    //1.执行lua脚本
    Long result = stringRedisTemplate.execute(
            SECKILL_SCRIPT,
            Collections.emptyList(),
            voucherId.toString(),userId.toString(),
            String.valueOf(orderId)
    );
    int r = result.intValue();
    //2.判断结果是否为0
    if(r != 0){
        //2.1 不为0 ,代表没有购买资格
        return Result.fail(r == 1?"库存不足":"不能重复下单");
    }
    //TODO 保存阻塞队列

    //3.返回订单id
    return Result.ok(orderId);
}

6.3 秒杀优化-基于阻塞队列实现秒杀优化

VoucherOrderServiceImpl

修改下单动作,现在我们去下单时,是通过lua表达式去原子执行判断逻辑,如果判断我出来不为0 ,则要么是库存不足,要么是重复下单,返回错误信息,如果是0,则把下单的逻辑保存到队列中去,然后异步执行

首先,使用阻塞队列来异步创建订单

   private BlockingQueue<VoucherOrder> orderTasks = new ArrayBlockingQueue<>(1024*1024);

    //异步处理线程池
    private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();


    //在类初始化之后执行,因为当这个类初始化好了之后,随时都是有可能要执行的
    @PostConstruct
    private void init() {
        SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
    }

    // 用于线程池处理的任务
// 当初始化完毕后,就会去从对列中去拿信息
    private class VoucherOrderHandler implements Runnable{
        public void run(){
            while(true){
                //1.获取队列中的信息
                try {
                    VoucherOrder voucherOrder =  orderTasks.take();
                    //2.创建订单
                    handleVoucherOrder(voucherOrder);
                } catch (InterruptedException e) {
                    throw new RuntimeException(e);
                }
            }
        }
    }

    private void handleVoucherOrder(VoucherOrder voucherOrder) {
        //1.获取用户
        Long userId = voucherOrder.getUserId();
        // 2.创建锁对象
        RLock redisLock = redissonClient.getLock("lock:order:" + userId);
        // 3.尝试获取锁
        boolean isLock = redisLock.tryLock();

        // 4.判断是否获得锁成功
        if (!isLock) {
            // 获取锁失败,直接返回失败或者重试
            log.error("不允许重复下单!");
            return;
        }
        try {
            //注意:由于是spring的事务是放在threadLocal中,此时的是多线程,事务会失效
            proxy.createVoucherOrder(voucherOrder);
        } finally {
            // 释放锁
            redisLock.unlock();
        }
    }

    private IVoucherOrderService proxy;
    @Override

之后,修改秒杀方法和创建订单的方法。

修改后的整体代码如下。

package com.hmdp.service.impl;

import com.hmdp.dto.Result;
import com.hmdp.entity.VoucherOrder;
import com.hmdp.mapper.VoucherOrderMapper;
import com.hmdp.service.ISeckillVoucherService;
import com.hmdp.service.IVoucherOrderService;
import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl;
import com.hmdp.utils.RedisIdWorker;
import com.hmdp.utils.UserHolder;
import org.redisson.api.RLock;
import org.redisson.api.RedissonClient;
import org.springframework.aop.framework.AopContext;
import org.springframework.core.io.ClassPathResource;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.data.redis.core.script.DefaultRedisScript;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

import javax.annotation.PostConstruct;
import javax.annotation.Resource;
import java.util.Collections;
import java.util.concurrent.*;

/**
 * <p>
 *  服务实现类
 * </p>
 *
 * @author 虎哥
 * @since 2021-12-22
 */
@Service
public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder> implements IVoucherOrderService {

    @Resource
    private ISeckillVoucherService seckillVoucherService;
    @Resource
    private IVoucherOrderService iVoucherOrderService;

    @Resource
    private RedisIdWorker redisIdWorker;
    @Resource
    private StringRedisTemplate stringRedisTemplate;

    @Resource
    private RedissonClient redissonClient;


    private static final DefaultRedisScript<Long> SECKILL_SCRIPT;
    static {
        SECKILL_SCRIPT = new DefaultRedisScript<>();
        SECKILL_SCRIPT.setLocation(new ClassPathResource("seckill.lua"));
        SECKILL_SCRIPT.setResultType(Long.class);
    }

    private BlockingQueue<VoucherOrder> orderTasks = new ArrayBlockingQueue<>(1024*1024);

    //异步处理线程池
    private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();


    //在类初始化之后执行,因为当这个类初始化好了之后,随时都是有可能要执行的
    @PostConstruct
    private void init() {
        SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
    }

    // 用于线程池处理的任务
// 当初始化完毕后,就会去从对列中去拿信息
    private class VoucherOrderHandler implements Runnable{
        public void run(){
            while(true){
                //1.获取队列中的信息
                try {
                    VoucherOrder voucherOrder =  orderTasks.take();
                    //2.创建订单
                    handleVoucherOrder(voucherOrder);
                } catch (InterruptedException e) {
                    throw new RuntimeException(e);
                }
            }
        }
    }

    private void handleVoucherOrder(VoucherOrder voucherOrder) {
        //1.获取用户
        Long userId = voucherOrder.getUserId();
        // 2.创建锁对象
        RLock redisLock = redissonClient.getLock("lock:order:" + userId);
        // 3.尝试获取锁
        boolean isLock = redisLock.tryLock();

        // 4.判断是否获得锁成功
        if (!isLock) {
            // 获取锁失败,直接返回失败或者重试
            log.error("不允许重复下单!");
            return;
        }
        try {
            //注意:由于是spring的事务是放在threadLocal中,此时的是多线程,事务会失效
            proxy.createVoucherOrder(voucherOrder);
        } finally {
            // 释放锁
            redisLock.unlock();
        }
    }

    private IVoucherOrderService proxy;
    @Override
    public Result seckillVoucher(Long voucherId) {
        //获取用户
        Long userId = UserHolder.getUser().getId();
        long orderId = redisIdWorker.nextId("order");
        //1.执行lua脚本
        Long result = stringRedisTemplate.execute(
                SECKILL_SCRIPT,
                Collections.emptyList(),
                voucherId.toString(),userId.toString(),
                String.valueOf(orderId)
        );
        int r = result.intValue();
        //2.判断结果是否为0
        if(r != 0){
            //2.1 不为0 ,代表没有购买资格
            return Result.fail(r == 1?"库存不足":"不能重复下单");
        }
        //保存阻塞队列
        VoucherOrder voucherOrder = new VoucherOrder();

        voucherOrder.setId(orderId);
        // 2.4.用户id
        voucherOrder.setUserId(userId);
        // 2.5.代金券id
        voucherOrder.setVoucherId(voucherId);
        // 2.6.放入阻塞队列
        orderTasks.add(voucherOrder);
        //3.获取代理对象
        proxy = (IVoucherOrderService)AopContext.currentProxy();

        //3.返回订单id
        return Result.ok(orderId);
    }
/*    @Override
    public Result seckillVoucher(Long voucherId) {
        //1. 查询优惠券
        SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
        //2.判断秒杀是否开始
        if(voucher.getBeginTime().isAfter(LocalDateTime.now())){
            //尚未开始
            return Result.fail("秒杀尚未开始!");
        }
        //3.判断秒杀是否已经结束
        if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
            // 尚未开始
            return Result.fail("秒杀已经结束!");
        }
        //4.判断库存是否充足
        if (voucher.getStock() < 1) {
            // 库存不足
            return Result.fail("库存不足!");
        }

        Long userId = UserHolder.getUser().getId();

        //创建锁对象 这个代码不用了,因为我们现在要使用分布式锁
        //SimpleRedisLock lock = new SimpleRedisLock("order:" + userId, stringRedisTemplate);
        RLock lock = redissonClient.getLock("lock:order:" + userId);
        //获取锁
        boolean isLock =  lock.tryLock();
        if(!isLock){
            //获取锁失败,返回错误或重试
            return Result.fail("不允许重复下单");
        }
        try{
            //获取代理对象(事务)
            IVoucherOrderService prox = (IVoucherOrderService) AopContext.currentProxy();
            return prox.createVoucherOrder(voucherId);
        }finally {
            //释放锁
            lock.unlock();
        }


*//*        synchronized (userId.toString().intern()){
            //获取代理对象(事务)
            IVoucherOrderService prox = (IVoucherOrderService) AopContext.currentProxy();
            return prox.createVoucherOrder(voucherId);
        }*//*
    }*/

    @Transactional
    public void createVoucherOrder(VoucherOrder voucherOrder){
        // 5.一人一单逻辑
        // 5.1.用户id
        Long userId = voucherOrder.getId();

        int count = query().eq("user_id", userId).eq("voucher_id", voucherOrder).count();
        // 5.2.判断是否存在
        if (count > 0) {
            // 用户已经购买过了
            log.error("用户已经购买过一次!");
            return ;
        }

        //6.扣减库存
        boolean success = seckillVoucherService.update()
                .setSql("stock= stock -1") // set stock = stock -1
                .eq("voucher_id", voucherOrder)
                .gt("stock",0)// where id = ? and stock > 0
                .update();
        if (!success) {
            //扣减库存
            log.error("库存不足!");
            return ;
        }


        save(voucherOrder);

    }
}

小总结:

秒杀业务的优化思路是什么?

  • 先利用Redis完成库存余量、一人一单判断,完成抢单业务
  • 再将下单业务放入阻塞队列,利用独立线程异步下单
  • 基于阻塞队列的异步秒杀存在哪些问题?
    • 内存限制问题
    • 数据安全问题
黑马rabbitMQ优惠卷秒杀是指利用RabbitMQ消息队列来实现优惠卷的秒杀活动。RabbitMQ是一个开源的消息队列中间件,它可以实现高效的消息传递和异步通信。在秒杀活动中,由于瞬间会有大量用户同时请求抢购,传统的同步处理方式无法满足高并发的需求,而使用RabbitMQ可以将请求异步化,提高系统的并发处理能力。 具体实现过程如下: 1. 创建一个消息队列:首先需要创建一个RabbitMQ消息队列,用于存储用户的秒杀请求。 2. 生成优惠卷:在秒杀活动开始前,需要提前生成一定数量的优惠卷,并将其存储在数据库中。 3. 用户抢购请求:用户在秒杀活动开始时,发送抢购请求到消息队列中。 4. 消费者处理请求:创建多个消费者来监听消息队列中的请求,并进行处理。当有新的请求进入队列时,消费者会从队列中获取请求,并进行相应的处理逻辑。 5. 校验优惠卷:消费者在处理请求时,会先校验用户是否有资格参与秒杀活动,并检查优惠卷的库存情况。 6. 分发优惠卷:如果用户符合条件并且优惠卷有库存,消费者会将优惠卷分发给用户,并更新数据库中的库存信息。 7. 返回结果:消费者处理完请求后,将处理结果返回给用户,告知用户是否成功抢购。 通过使用RabbitMQ消息队列,可以有效地解决高并发场景下的请求处理问题,提高系统的性能和稳定性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值