递归的记忆化搜索
题目描述
对于一个递归函数w(a,b,c)w(a,b,c)
如果a≤0 or b≤0 or c≤0就返回值1.
如果a>20 or b>20 or c>20就返回w(20,20,20)
如果a<b并且b<c 就返回w(a,b,c-1)+w(a,b-1,c-1)-w(a,b-1,c)
其它的情况就返回w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1)
这是个简单的递归函数,但实现起来可能会有些问题。当a,b,ca,b,c均为15时,调用的次数将非常的多。你要想个办法才行.
对于w(30,-1,0)w(30,−1,0)既满足条件1又满足条件2,这种时候我们就按最上面的条件来。所以答案为1
输入格式会有若干行。并以-1,-1,-1结束。保证输入的数在[-9223372036854775808,9223372036854775807]之间,并且是整数。
输出若干行,每一行格式:
w(a, b, c) = ans
思路
- 对于一些递归问题, 总是会重复某些复杂的递归过程,可以通过引用一个数组来记录已经计算过的值从而避免重复递归。就叫做记忆化搜索。
代码
#include <iostream>
#include <cstdio>
#define INF 0x3f3f3f3f
using namespace std;
long long s[25][25][25];
long long w(int x,int y,int z){
if(x<=0||y<=0||z<=0) return 1;
else if(x>20||y>20||z>20) return w(20,20,20);
else if(s[x][y][z]!=INF) return s[x][y][z];
else if(x<y&&y<z){
s[x][y][z]=w(x,y,z-1)+w(x,y-1,z-1)-w(x,y-1,z);
return s[x][y][z];
}
else{
s[x][y][z]=w(x-1,y,z)+w(x-1,y-1,z)+w(x-1,y,z-1)-w(x-1,y-1,z-1);
return s[x][y][z];
}
int main(){
for(int i=0;i<25;i++)
for(int j=0;j<25;j++)
for(int q=0;q<25;q++)
s[i][j][q]=INF;
while(1){
long long a,b,c;
scanf("%lld%lld%lld",&a,&b,&c);
if(a==-1&&b==-1&&c==-1) break;
printf("w(%lld, %lld, %lld) = %lld\n",a,b,c,w(a,b,c));
}
return 0;
}