回归后独立性检验(Regression with Subsequent Independence Test, RESIT)模型由Peters等人于2014年提出,是因果发现领域的一种重要方法。RESIT模型基于加性噪声模型(ANM)并将其扩展到多变量场景。其主要目标是通过回归和独立性测试的结合来构建因果结构,尤其适用于处理多变量因果关系的推断。以下是对RESIT模型的详细解释,包括其核心思想、操作步骤、优缺点等。
RESIT模型的核心思想
RESIT模型的核心思想是结合非线性回归和独立性测试来推断变量之间的因果关系。在多变量环境中,该模型假设数据生成过程遵循如下形式:
Y=f(X)+E Y = f(X) + E Y=f(X)+E
其中:
- YYY 是因变量,XXX 是一个或多个自变量。
- fff 是一个未知的(通常为非线性)函数。
- EEE 是噪声项,并且独立于 XXX。
在此模型中,如果因果方向从 XXX 到 YYY 成立,那么在正确的因果方向上,回归残差(即噪声项) EEE 应该与 XXX 独立。这个独立性假设是RESIT模型推断因果方向的基础。
RESIT的流程
RESIT模型的因果发现过程一般分为以下几个主要步骤:

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



