深度学习之因果发现(五)Regression with Subsequent Independence Test(RESIT)

回归后独立性检验(Regression with Subsequent Independence Test, RESIT)模型由Peters等人于2014年提出,是因果发现领域的一种重要方法。RESIT模型基于加性噪声模型(ANM)并将其扩展到多变量场景。其主要目标是通过回归和独立性测试的结合来构建因果结构,尤其适用于处理多变量因果关系的推断。以下是对RESIT模型的详细解释,包括其核心思想、操作步骤、优缺点等。

RESIT模型的核心思想

RESIT模型的核心思想是结合非线性回归和独立性测试来推断变量之间的因果关系。在多变量环境中,该模型假设数据生成过程遵循如下形式:

Y=f(X)+E Y = f(X) + E Y=f(X)+E

其中:

  • YYY 是因变量,XXX 是一个或多个自变量。
  • fff 是一个未知的(通常为非线性)函数。
  • EEE 是噪声项,并且独立于 XXX

在此模型中,如果因果方向从 XXXYYY 成立,那么在正确的因果方向上,回归残差(即噪声项) EEE 应该与 XXX 独立。这个独立性假设是RESIT模型推断因果方向的基础。

RESIT的流程

RESIT模型的因果发现过程一般分为以下几个主要步骤:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值