CGNN(因果生成神经网络)基于的是功能性因果模型(Functional Causal Model, FCM),而不是传统的结构性因果模型(Structural Causal Model, SCM)。在论文中,CGNN采用生成神经网络来学习多变量因果机制,允许在没有显式函数限制的情况下表示复杂的因果关系。
功能性因果模型(FCM)与SCM的区别
- SCM(结构性因果模型):
- SCM通常使用明确的结构方程来描述因果关系。每个变量由其父节点通过一个确定性或随机函数生成,且噪声项往往是加性且独立的。
- 在SCM中,模型通常假设因果机制是固定的(例如线性模型或加性噪声模型),这限制了模型的灵活性。
- FCM(功能性因果模型):
- FCM是一类更加灵活的因果模型,可以表示非线性和非加性因果关系。CGNN使用神经网络来学习因果关系,从而不需要对函数形式做出严格的假设。
- FCM可以表示复杂的条件分布,而不是局限于特定的噪声结构(例如加性噪声)。CGNN采用的FCM利用生成神经网络来捕捉数据中的非对称性和非线性特征,这使得它在因果推断中更具适应性。
为什么选择FCM而不是SCM?
CGNN使用FCM主要是为了克服SCM的限制,提供更高的灵活性和表示能力:
- 非加性因果贡献:SC