1018数学考试(注意用longlong还是int)

 ————————————链接——————————————

//#include<iostream>
//#include<algorithm>
//#include<cstring>
//using namespace std;
//
//int a[5] = { 5,3,10,7,1 };
//int sum[200005];
//#define mem(a) memset(a, 0, sizeof(a)) 
//int main() {
//	int min = -1000, min2 = -1000;
//	for (int i = 1; i <= 4; i++) {
//		if (a[i-1] > min)min = a[i-1];
//		if (min + a[i] > min2)min2 = min + a[i];
//	}
//	cout << min2;
//}
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int b[200005];
int a[200005];
int sum[200005];
#define mem(a) memset(a, 0, sizeof(a)) 
int main() {
    int T;
    cin >> T;
    int n, k;
    while (T--) {
        memset(b, 0, sizeof(b));
        cin >> n >> k;
        for (int i = 1; i <= n; i++) {
            cin >> a[i];
            sum[i] = sum[i - 1] + a[i];
        }
        int cnt = 1;
        for (int i = k; i <= n; i++) {
            b[cnt++] = sum[i] - sum[i - k];
        }
        long long MAX1 = -1e18, MAX2 = -1e18;
        for (int i = k + 1; i <= n - k + 1; i++) {
            if (b[i - k] > MAX1)
                MAX1 = b[i - k];
            if (MAX1 + b[i] > MAX2)
                MAX2 = b[i] + MAX1;
        }
        cout << MAX2 << endl;
    }
}

上面不对下面的对?????!!!!!!!!!!!!!!!!!!

#include<iostream>
#include<algorithm>
#include<cstring>
typedef long long ll;
using namespace std;
ll a[200005], b[200005];
#define mem(a) memset(a, 0, sizeof(a))
int main() {
    int T;
    cin >> T;
    ll n, k;
    while (T--) {
        memset(b, 0, sizeof(b));
        memset(a, 0, sizeof(a));
        cin >> n >> k;
        for (ll i = 1; i <= n; i++) {
            cin >> a[i];
            a[i] = a[i - 1] + a[i];
        }
        ll cnt = 1;
        for (ll i = k; i <= n; i++) {
            b[cnt++] = a[i] - a[i - k];
        }
        //b数组相当于所有区间和枚举
        ll MAX1 = -1e18, ans = -1e18;
        for (int i = k + 1; i <= n - k + 1; i++) {
            MAX1 = max(MAX1, b[i - k]);
            ans = max(ans, MAX1 + b[i]);
        }
        cout << ans << endl;
    }
}

焯!懂了 看数据200000*100000是一个11位数,而int最大10位数,数据一大直接溢出炸了。就是int和long long的区别就能导致AC与否!

            if (b[i - k] > MAX1)

                MAX1 = b[i - k];

            if (MAX1 + b[i] > ans)

                ans = b[i] + MAX1;

            MAX1 = max(MAX1, b[i - k]);

            ans = max(ans, MAX1 + b[i]);

没一点关系,这两个代码同等效力!

内容概要:本文详细介绍了利用COMSOL进行边坡降雨入渗数值模拟的方法,特别是针对流量-压力混合边界条件的应用。首先讨论了几何建模的最佳实践,如使用AutoCAD绘制并导入DXF文件,确保边坡角度和高度符合实际工程场景。接着深入探讨了混合边界条件的核心控制方程及其在COMSOL中的具体实现方式,强调了根据降雨强度动态切换边界类的必要性和实现细节。文中还提供了关于计算收敛性的宝贵经验和技巧,包括初始条件的选择、时间步长的设定以及网格划分策略。此外,作者分享了后处理阶段的数据可视化方法,展示了不同降雨强度下边坡渗流场的变化特性,并解释了一些反直觉的现象,如特大暴雨时边坡底部可能出现负压区。 适合人群:从事岩土工程、环境科学及相关领域的研究人员和技术人员,尤其是那些希望深入了解边坡稳定性分析和数值模拟的人群。 使用场景及目标:适用于需要评估边坡在不同降雨条件下稳定性的项目,帮助预测潜在滑坡风险,优化防灾减灾措施的设计。通过掌握混合边界条件的处理方法,提高模拟精度,更好地理解和预测边坡行为。 其他说明:文中提供的代码片段和实践经验对于初学者来说非常有价值,能够显著减少建模过程中常见的错误和技术难题。同时,所介绍的技术手段不仅限于COMSOL软件,相关理念也可应用于其他类似的数值模拟工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值