在微服务架构中,多智能体(Multi-Agent)系统凭借 “分工协作” 的特性,能高效拆解复杂业务任务 —— 比如用「用户服务专家」处理用户查询,用「订单专家」管理交易流程。但这类系统往往有个短板:面对需要外部知识库支撑的场景(如文档问答、产品功能查询)时,仅靠业务逻辑和基础大模型(LLM)很难给出精准回答。
于是,我们为 Agent4GoMicroservice(基于 Go 的微服务多智能体方案)做了一次关键更新:新增 RAG 专家 Agent 与 Milvus 向量存储集成,让系统既能处理传统业务任务,又能 “读懂文档、精准答问”,真正具备 “业务处理 + 知识服务” 的双重能力。
为什么要给多智能体加 RAG?
在这次更新前,Agent4GoMicroservice 已能通过「Host Agent 协调 + 领域专家 Agent 执行」的模式,处理用户服务、订单管理等业务场景。但遇到以下需求时,系统就会 “卡壳”:
- 产品同学问:“VideoAnalyzer_v1 模块的视频解析输出格式有哪些字段?”
- 运维同事问:“用户服务微服务的重试机制配置在哪个文档里?”
这类问题的答案不在业务数据库中,而在技术文档、产品手册等非结构化文本里 —— 这正是 RAG(Retrieval-Augmented Generation,检索增强生成)的强项:先从知识库中精准找到相关片段,再让 LLM 基于片段生成回答,既避免 “幻觉”,又保证信息准确。
核心更新:RAG 专家 Agent + Eino+Milvus 工具链
这次更新没有颠覆原有架构,而是在现有多智能体体系中新增了 “知识处理链路”,核心是两个组件:
1. RAG 专家 Agent:专注知识任务的 “新同事”
我们新增的 rag_service 是专门处理知识任务的专家,它不像「用户服务专家」那样调用业务接口,而是专注于 “找知识、答问题”,核心能力

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



