【ACM数论】分治NTT

分治NTT

引出问题:
给定序列 g 1 , g 2 , g 3 . . . g n − 1 , 现有序列 f 满足 f i = ∑ j = 1 i f i − j g j , 且 f 0 = 1 ,求序列 f 0 , f 1 , f 2 , f 3 . . . . f n − 1 答案模 998244353 给定序列g_1,g_2,g_3...g_{n-1},现有序列f满足f_i=\sum_{j=1}^{i}f_{i-j}g_j,且f_0=1,求序列f_0,f_1,f_2,f_3....f_n-1 \\ 答案模998244353 给定序列g1,g2,g3...gn1,现有序列f满足fi=j=1ifijgj,f0=1,求序列f0,f1,f2,f3....fn1答案模998244353
看到这个递推式,第一眼一定是暴力,但是我们会发现,暴力的时间复杂度为 O ( n 2 ) O(n^2) O(n2),显而易见时间复杂度太高

那么这个时候,我们不妨考虑CDQ分治
我们考虑序列区间 [ l e f t , r i g h t ] 中 [ l e f t , m i d ] 对区间 [ m i d + 1 , r i g h t ] 的影响 显而易见,对于 x ∈ [ l e f t , m i d ] 而言,它对 y ∈ [ m i d + 1 , r i g h t ] 贡献为: f x × g y − x ∴ f y = f y + ∑ i = l e f t m i d f i g y − i 我们考虑序列区间[left,right]中[left,mid]对区间[mid+1,right]的影响\\ 显而易见,对于x\in[left,mid]而言,它对y\in[mid+1,right]贡献为:\\ f_x\times g_{y-x}\\ \therefore f_y=f_y+\sum_{i=left}^{mid}f_ig_{y-i} 我们考虑序列区间[left,right][left,mid]对区间[mid+1,right]的影响显而易见,对于x[left,mid]而言,它对y[mid+1,right]贡献为:fx×gyxfy=fy+i=leftmidfigyi
所以我们可以通过NTT将卷积的部分给计算出来,然后将相应的部分加上去便可以得到最后的答案。

计算一下时间复杂度:

由于我们是分治再套上NTT求卷积因此,时间复杂度为: O ( n l o g 2 n ) O(nlog^2n) O(nlog2n)

分治NTT模版

Poly f,g;//封装的多项式
// CDQ分治,先求出f[l,mid),可以发现这部分对区间的f[mid,r)的贡献是f[l,mid)∗g[0,r−l)
void cdqntt(int l, int r)
{
    if (l == r)
    {
        、、、、、、、
        return;
    }
    int mid = (l + r) >> 1;
    cdqntt(l, mid);
    f.a.clear(), g.a.clear();
    for (int i = l; i <= mid; i++)
    {
        f.a.push_back(F[i]);
    }
    for (int i = 0; i <= r - l; i++)
    {
        if (i == 0)
        {
            g.a.push_back(0);
        }
        else
        {
            g.a.push_back(G[i]);
        }
    }
    Poly fA = (Poly)f * g;//多项式NTT计算
    for (int i = mid + 1; i <= r; i++)
    {
        //计算贡献
    }
    cdqntt(mid + 1, r);
}
  • 11
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值