LeetCode_62_不同路径

该博客介绍了如何使用动态规划解决LeetCode上的第62题,即在一个mxn的网格中,计算从左上角到达右下角的不同路径数。动态规划方法通过计算每个位置的路径数(等于其上一个位置和左边位置的路径数之和)来逐步解决问题。代码示例展示了一个C++实现的解决方案,通过初始化边界条件并迭代中间位置来得出最终答案。
摘要由CSDN通过智能技术生成

LeetCode_62_不同路径

题意

(1)一个机器人位于一个 m x n 网格的左上角
(2)机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角
(3)问总共有多少条不同的路径?

思路:【动态规划】

(1) 到中间每个位置的路径数目=左边点路径数目+右边的路径数目,即为
dp[i][j] = dp[i-1][j] + dp[i][j-1];

(2) 案例
m = 3, n =7【3行7列】&& dp[3][7] = 28;
在这里插入图片描述
(3) 代码

class Solution {
public:
    int uniquePaths(int m, int n) {
        int dp[m+1][n+1];
        /*先把边界处理,到边界只有一种路径*/
        /*因为只能往右边或者下边行走*/
        for (int i = 1; i <= m; i++) {
            dp[i][1] = 1;
        }
        for (int j = 1; j <= n; j++) {
            dp[1][j] = 1;
        }   
        /*中间:上边+左边路径数目,分类加和*/
        for (int i = 2; i <= m; i++) {
            for (int j = 2; j <= n; j++) {
                dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
        return dp[m][n];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值