一阶电路零输入和零状态响应

这篇博客探讨了一阶电路的零状态和零输入响应。通过RC电路为例,详细阐述了解微分方程来求解响应的过程,强调了时间常数τ=RC在电路响应速度中的关键作用。讲解了如何求解初值、通解和全解,并介绍了响应的性质,特别是储能元件导致的衰减特性。此外,还提到了一阶电路解的一般步骤和特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

零状态响应
以RC电路为例
目的:求响应。也就是Uc
步骤:

  1. 列KVL。因为含有动态元件,所以是微分方程。

  2. 解微分方程就能得到Uc。*是一阶线性,套公式就能得到通解。
    特解(强制分量):与输入激励的变化规律有关,是电路的暂态解。计算时取下一稳态时的值,C断L短
    通解(自由分量):由电路参数和结构决定,是暂态分量。

    全解:把初始条件的Uc(0+)=0代入,求得微分方程的C=-Us
    再将该C代入Uc的通解便得到
    在这里插入图片描述

    时间常数tao=RC,越小,充电越快

在这里插入图片描述

零输入响应
推导过程也是解微分方程,定积分常数
*积分常数不是时间常数

  1. 一阶电路:经典法
    a,求初值Uc,iL
    b,列方程
    c,解出通解
    d,定积分常数

  2. 一阶电路解的性质
    a,由储能元件引起的响应,由初值衰减到0
    b,衰减快慢取决于时间常数tao
    tao=RC,tao=L/R

*结论都是些简单串联

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值