《用DeepSeek+Word拯救你的生产力!一键AI高效办公指南》

🌟 Hello, 代码世界! 🚀我是小柚子,一个穿梭在0和1之间的数据侠客。🛡️ 我的键盘就是我的武器,试探你就是我的魔法。🧙‍♂️
🎯 我的使命: 解决bug是我的日常,优化性能是我的追求。 守护着一个巨大的数据保险箱,将潜在的威胁隔离在安全区域之外。 📚 学习不息:
我坚信学习是成长的阶梯,在CSDN记录我的技术探索之旅。 学习接触更多前沿的技术,跟紧技术前进的步伐。
如果你对我的技术文章感兴趣,或者想要一起探讨技术问题,欢迎来交流!

一、 引言:职场办公操作与AI的机遇

“周五下午5点,老板突然甩来一句:‘这份市场分析报告,明早9点前必须定稿!’
你看着眼前堆满数据的Excel表格和空荡荡的Word文档,想到周末又要泡汤,恨不得把键盘摔在地上——

随着ai的火热,作为职场打工人,学会word文档操作是必不可少的,或多或少都需要用到文档的汇总总结编写。
今天我要分享的是在一个佬哥公众号看到的使用用DeepSeek(国内版ChatGPT)直接打通Word,把‘复制粘贴+手动排版+文案四处搜刮’的苦力活,变成‘30分钟生成专业报告’的魔法! 以下主要分享如何实现DeepSeek与Word的结合:
在这里插入图片描述

二、Word接入deepseek操作流程

1、实现效果

在这里插入图片描述
当我们在word中接入Deepseek之后,我们在文档中编写文案的时候,点击带有Deepseek的【生成】图标之后,模型就会根据要求生成相应的回答,我们可以询问相关的专业知识的定义、可以实现,更多的可以自己接入之后去摸一摸探索一下:

2、接入流程

获取API key

开始操作之前我们需要准备好DeepSeek的API key,获取方式就是去Deepseek的官网:

deepseek注册登录之后,在主页点击API开放平台
在这里插入图片描述
如何先点击创建API key ,之后复制API key,复制一份保存到某个地方,待会用到的时候能找到就行。
在这里插入图片描述

接入word

1、打开一个word,点击新建一个Word文档,点击 文件 -> 选项 -> 自定义功能区,勾选“开发者工具”。
在这里插入图片描述
2、点击 信任中心 -> 信任中心设置,选择:启用所有宏”与“信任对VBA,点击确定之后这里的设置完成。
在这里插入图片描述
3、设置完成之后我们可以在主页看到开发者工具出现了Visual Basic,点击它
在这里插入图片描述
4、然后点击插入–模块,生成一个模块1的编辑器。
在这里插入图片描述
在编辑器中插入以下代码:将其中的API key替换成我们刚刚在 DeepSeek上获取到的:然后我们需要将代码整理成 VBA 代码格式(Markdown 代码块):

Function CallDeepSeekAPI(api_key As String, inputText As String) As String
    Dim API As String
    Dim SendTxt As String
    Dim Http As Object
    Dim status_code As Integer
    Dim response As String
    
    API = "https://api.deepseek.com/chat/completions"
    SendTxt = "{""model"": ""deepseek-chat"", ""messages"": [{""role"":""system"", ""content"":""You are a Word assistant""}, {""role"":""user"", ""content"":""" & inputText & """}], ""stream"": false}"
    
    Set Http = CreateObject("MSXML2.XMLHTTP")
    With Http
        .Open "POST", API, False
        .setRequestHeader "Content-Type", "application/json"
        .setRequestHeader "Authorization", "Bearer " & api_key
        .send SendTxt
        status_code = .Status
        response = .responseText
    End With
    
    ' 弹出窗口显示 API 响应(调试用)
    ' MsgBox "API Response: " & response, vbInformation, "Debug Info"
    
    If status_code = 200 Then
        CallDeepSeekAPI = response
    Else
        CallDeepSeekAPI = "Error: " & status_code & " - " & response
    End If
    
    Set Http = Nothing
End Function

Sub DeepSeekV3()
    Dim api_key As String
    Dim inputText As String
    Dim response As String
    Dim regex As Object
    Dim matches As Object
    Dim originalSelection As Object
    
    api_key = "替换为你的api key"
    If api_key = "" Then
        MsgBox "Please enter the API key."
        Exit Sub
    ElseIf Selection.Type <> wdSelectionNormal Then
        MsgBox "Please select text."
        Exit Sub
    End If
    
    ' 保存原始选中的文本
    Set originalSelection = Selection.Range.Duplicate
    
    inputText = Replace(Replace(Replace(Replace(Replace(Selection.text, "\", "\\"), vbCrLf, ""), vbCr, ""), vbLf, ""), Chr(34), "\""")
    response = CallDeepSeekAPI(api_key, inputText)
    
    If Left(response, 5) <> "Error" Then
        Set regex = CreateObject("VBScript.RegExp")
        With regex
            .Global = True
            .MultiLine = True
            .IgnoreCase = False
            .Pattern = """content"":""(.*?)"""
        End With
        
        Set matches = regex.Execute(response)
        If matches.Count > 0 Then
            response = matches(0).SubMatches(0)
            response = Replace(Replace(response, """", Chr(34)), """", Chr(34))
            
            ' 取消选中原始文本
            Selection.Collapse Direction:=wdCollapseEnd
            
            ' 将内容插入到选中文字的下一行
            Selection.TypeParagraph ' 插入新行
            Selection.TypeText Text:=response
            
            ' 将光标移回原来选中文本的末尾
            originalSelection.Select
        Else
            MsgBox "Failed to parse API response.", vbExclamation
        End If
    Else
        MsgBox response, vbCritical
    End If
End Sub

复制到文件里面之后,点击关闭窗口
5、点击 文件 -> 选项 -> 自定义功能区,右键开发工具,点击添加新组。
在这里插入图片描述
6、在添加的新建组上点击右键,点击重命名。将其命名为自己想命名的名称,并选择一个图标,也可以不选,最后点击确定。
在这里插入图片描述
7、选择新建的组:DeepSeek(自定义),选择左侧的命令为“宏”,找到我们添加的DeepSeekV3,选中后点击添加。
在这里插入图片描述
8、添加之后的宏,右键点击重命名,选择开始符号作为图标,并重命名为“运行”(可以自定义),点击确定。
在这里插入图片描述
9、最后整个接入流程完毕,出现以下的就说明接入成功!

接入成功

在这里插入图片描述

三、总结

接入完成之后,我实际操作的感受就是:
优点就是:可以方便我们在日常办公的内容文案的直接生成,也可以丰富我们的内容。
缺点就是:可能是DeepSeek被攻击之后遗留的导致生成比较慢,还是需要耐心等待一段时间,有一些内容的生成还是需要优化一下的。
总的来说 是可以满足我们基础的办公需求,配置也比较简单,可以都去试一试,玩一玩!

🚀 结语:感谢你阅读到这里,希望我的分享能给你带来启发。让我们一起在技术的海洋中航行,探索未知的大陆!

### 使用 DeepSeek代码示例 #### Spring Boot 应用程序集成 DeepSeek API 为了使 Spring Boot 应用程序能够调用 DeepSeek 提供的服务,需确保正确配置了 DeepSeek 的 API Key 和端点。这通常涉及设置环境变量或在应用程序属性文件中指定这些参数[^1]。 ```java @RestController @RequestMapping("/api/v1/deepseek") public class DeepSeekController { private final RestTemplate restTemplate; public DeepSeekController(RestTemplateBuilder restTemplateBuilder) { this.restTemplate = restTemplateBuilder.build(); } @GetMapping("/query") public ResponseEntity<String> query(@RequestParam String q) { HttpHeaders headers = new HttpHeaders(); headers.set("Authorization", "Bearer YOUR_API_KEY"); HttpEntity<String> entity = new HttpEntity<>("parameters", headers); ResponseEntity<String> response = restTemplate.exchange( "https://ENDPOINT/query", HttpMethod.POST, entity, String.class); return new ResponseEntity<>(response.getBody(), HttpStatus.OK); } } ``` 此段 Java 代码展示了如何通过 RESTful 方式向 DeepSeek 发送查询请求并接收返回的数据。 #### 构建基于 DeepSeek 和 Ollama 的 RAG 系统 对于更复杂的场景,比如构建检索增强生成 (RAG) 系统,则可以参考由 lisakim0 所分享的技术实现要点以及完整的 JavaScript 实现案例[^2]: ```javascript const { createClient } = require('@ollama/client'); const client = createClient({ apiKey: 'YOUR_OLLAMA_API_KEY', }); async function ragQuery(queryText) { const result = await client.query({ indexName: 'your_index_name', text: queryText, }); console.log(result.hits); // 处理搜索结果... } ragQuery('example question').catch(console.error); ``` 这段 Node.js 脚本利用 `@ollama/client` SDK 来执行针对特定索引的查询操作,并打印匹配项列表作为输出。 #### 部署本地版 DeepSeek 并开发联网功能的应用 当考虑安全性与性能因素时,在私有环境中运行 DeepSeek 可能是一个更好的选择。zt199510 给出了一个具体的例子来说明怎样搭建这样的平台及其配套工具链[^3]: ```bash git clone https://github.com/zt199510/deepseeksk.git cd deepseeksk/ docker-compose up -d --build ``` 上述命令序列用于克隆仓库、进入项目目录并通过 Docker Compose 启动服务容器组。之后可以根据官方指南进一步定制化安装过程。 #### LangChain Shell Tool with DeepSeek Model 最后提到的是关于 langchain shell tool 结合使用 OpenAI 接口而底层依赖于国内供应商提供的 DeepSeek 模型的情况。这里的关键在于完成必要的认证流程后即可正常使用该特性[^4]。 ```python import os from langchain import LLMChain, PromptTemplate from langchain.llms.deepseek import DeepSeek os.environ["DEEPSEEK_API_KEY"] = "your_deepseek_api_key" template = """Question: {question}""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm_chain = LLMChain(prompt=prompt, llm=DeepSeek()) answer = llm_chain.run({"question": "What is the capital of France?"}) print(f"The answer is {answer}") ``` Python 中定义了一个简单的对话链条,它接受一个问题字符串作为输入并向用户提供相应的答案文本。注意这里的 `DeepSeek()` 初始化函数会自动读取之前设定好的环境变量来进行身份验证。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

欢喜躲在眉梢里-柚子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值