用于点击率预测的深度行为路径匹配网络
摘要
用户在电子商务应用程序上的行为不仅包含对商品的各种反馈,有时还隐含着用户决策的认知线索。为了解用户决策背后的心理过程,我们提出了行为路径,并建议将用户当前行为路径与历史行为路径相匹配,以预测用户在应用程序上的行为。此外,我们还设计了用于行为路径匹配的深度神经网络,并解决了行为路径建模中的三个难题:稀疏性、噪声干扰和行为路径的精确匹配。特别是,我们利用对比学习来增强用户行为路径,提供行为路径自激活来减轻噪声影响,并采用两级匹配机制来识别最合适的候选路径。我们的模型在两个真实世界的数据集上表现出色,优于最先进的点击率模型。此外,我们的模型已部署在美团外卖平台上,累计提高了 1.6% 的点击率和 1.8% 的广告收入。
引言
美团外卖 APP 是一款餐饮零售类应用。通过该软件,用户可以浏览和选择 POI(兴趣点,如餐馆、食品店和咖啡馆),并下单购买食物,这些食物将快速送到用户手中。该应用有望了解用户决策背后的心理,并向用户推送相关候选项,从而提高点击率(CTR),进一步增加交易量和广告收入。
我们注意到,用户在应用程序上的行为是用户决策心理的重要体现。然而现有的一些点击率预测模型虽然对用户行为进行了分析,但都是从长序列或多种行为的角度出发,对历史行为序列中的候选行为和单个行为采用点对点的激活方式,没有考虑到包含用户决策轨迹的连续行为的影响。因此,对于点击目标 POI 这一行为,我们将用户在此之前的连续行为(包括浏览 POI、下单等)视为一条行为路径。通过观察美团外卖 APP 的历史数据,我们发现行为路径与点击行为之间存在密切的相关性。
上述观察结果促使我们开发出一种可进行行为路径匹配以预测用户下一次点击的模型。其核心思想是从用户行为路径中学习与决策心理相关的潜在因素,从而生成其嵌入。有了行为路径的嵌入,模型就会在历史行为路径和当前行为路径之间进行匹配,并估算候选行为的点击率。
然而,用户行为路径建模具有挑战性,因为存在三个困难:行为路径的稀疏性、行为路径中的噪声干扰以及行为路径之间的精确匹配。首先,对于单个用户来说,用户与应用程序之间的交互并不多,这就导致难以捕捉用户的所有行为模式。为了解决行为路径稀少的问题,我们利用对比学习来增强用户行为路径的正向性,优化用户行为路径的学习。其次,用户行为路径中存在大量噪声。例如,用户因某个 POI 的封面吸引而点击该 POI,但一旦用户觉得不喜欢该 POI,就会立即返回。这种行为实际上成了路径中的噪音。为了减少噪音的影响,我们建立了一个动态激活网络,重点关注路径中的几个主要行为。与平等对待路径中的所有行为相比,动态激活更加有效和高效,因为某些行为确实会对后续行为产生更明显的影响。 最后,我们提出了一种两级匹配机制。在第一层,对于当前路径,我们计算每个历史行为路径的激活权重,然后选择前 k 个最相似的历史路径。在第二层,给定候选路径和已选路径后,我们计算跟随已选路径的点击行为的激活权重,以预测点击率。
主要贡献总结如下:
我们首次将用户行为路径匹配引入工业点击率预测中。我们确定了行为路径建模的挑战,即行为路径的稀疏性、噪声和匹配问题。
我们提出了一种用于预测点击率的深度行为路径匹配网络(DBPMaN),它可以增强行为路径,提供行为路径自激活功能,并执行两级匹配(先是行为路径级,然后是点击行为级)来预测点击率。
我们在两个不同规模的真实数据集上进行了离线实验,并在美团广告中进行了在线 A/B 测试。实验结果表明 DBPMaN 是有效的,并达到了最先进的性能。
相关工作
点击率预测作为推荐系统的核心部分,一直是业界和学术界关注的热点话题[18]。
CTR 预测的经典解决方案是学习特征交互,其中 DeepFM [6]、xDeepFM [9] 和 ONN [17] 是早期具有代表性的深度神经网络模型,而 CAN [1] 则是目前开源 CTR 模型中性能最先进的。
最近,连续行为建模成为点击率预测的新动力。建模行为的粒度范围从单一行为(如 DIN [21])到多种行为(如 FeedRec [15]),从短序列(如 DIEN [20]、DSIN [5])到超长序列(如 MIMN [11]、SIM [12]、ETA [2])。这些模型旨在捕捉用户兴趣[5,19-21]或意图[8],通常采用点对点