描述
判断给定的链表中是否有环。如果有环则返回true,否则返回false。
数据范围:链表长度 0 \le n \le 100000≤n≤10000,链表中任意节点的值满足 |val| <= 100000∣val∣<=100000
要求:空间复杂度 O(1)O(1),时间复杂度 O(n)O(n)
输入分为两部分,第一部分为链表,第二部分代表是否有环,然后将组成的head头结点传入到函数里面。-1代表无环,其它的数字代表有环,这些参数解释仅仅是为了方便读者自测调试。实际在编程时读入的是链表的头节点。
例如输入{3,2,0,-4},1时,对应的链表结构如下图所示:
可以看出环的入口结点为从头结点开始的第1个结点(注:头结点为第0个结点),所以输出true。
为什么链表有环快慢指针一定会相遇?
快指针遍历完环后不会结束遍历, 而是在环上面循环遍历. 这时候总会和慢指针相遇的.
结论1: 当链表中有环时, 快慢指针一定在环中的某个节点相遇.
结论2: 两个指针分别从环中的相遇节点出发, 和从首节点触发, 每次走一步,一定会在环入口处相遇.
/**
* Definition for singly-linked list.
* class ListNode {
* int val;
* ListNode next;
* ListNode(int x) {
* val = x;
* next = null;
* }
* }
*/
public class Solution {
public boolean hasCycle(ListNode head) {
if(head==null){
return false;
}
//先定义两个快慢节点
ListNode fast=head;
ListNode slow=head;
while(fast!=null&&fast.next!=null){
fast=fast.next.next;//快的节点每次走两步
slow=slow.next;//慢的节点每次走一步
if(fast==slow){//如果他们相遇,则证明链表有环
return true;
}
}
//循环结束,循环中的条件没有哦满足,则证明链表没有环
return false;
}
}