- 博客(18)
- 收藏
- 关注
原创 如何正确终止nohup启动的后台子进程
摘要:使用 nohup 启动后台任务时,直接终止返回的 PID 可能无法终止核心应用进程。这是由于 Linux 进程层级关系导致,脚本进程退出后其子进程会被系统接管继续运行。解决方案包括:1)使用 PID 文件精确管理核心应用进程;2)通过 pkill 按名称终止;3)终止整个进程组。其中推荐采用 PID 文件方式,在启动脚本中捕获核心应用 PID 并持久化存储,便于后续精确管理。这种方法是系统服务的标准管理模式,能确保进程管理的可靠性。
2025-09-22 20:33:59
1142
原创 LeetCode 1751. 最多可以参加的会议数目 II - 详细题解 (动态规划 + 手写二分查找)
本文解析了LeetCode 1751题"最多可以参加的会议数目II",这是一道结合区间调度与价值最大化的动态规划问题。文章提出按结束时间排序会议后,使用二维DP记录前i个会议参加j次的最大价值,并通过二分查找高效定位不冲突的会议。关键点在于状态转移方程的设计和二分查找的边界处理,最终实现O(N·K·logN)的时间复杂度。代码实现中特别注重了索引映射关系和二分查找的细节处理。
2025-07-08 14:29:26
1124
原创 LeetCode 1353: 最多可以参加的会议数目 | 题解:从朴素贪心到并查集优化
本文介绍了LeetCode 1353题"最多可以参加的会议数目"的两种解法。核心贪心策略是优先安排结束时间早的会议。朴素解法通过排序和线性查找可用日期实现,时间复杂度O(N·D)。优化解法利用并查集快速定位可用日期,将时间复杂度降至O(N log N)。并查集通过路径压缩和合并操作,高效管理日期占用状态,完美解决了线性查找的性能瓶颈。两种解法空间复杂度均为O(D)。
2025-07-07 17:36:26
1186
原创 vue3 i18n + i18n ally扩展 配置及其使用
设置多个文件如 setting.json, user.json 对应不同的业务。注意:若语言包文件类型为ts、js则为只读、无法使用ally对其编辑。项目目录下 .vscode/setting.json 配置ally。在左侧 点击 ally即可看到当前代码文件对应的key。设置Engines为deepl 并填入对应的key。注意在main.ts 中也要引入。zh_CN的index.ts。扩展里搜索ally并下载。
2025-04-17 13:57:50
850
原创 vscode ssh 密钥免密连接服务器 已有密钥对
若本地已生成密钥对,则直接使用 ssh-copy-id root@123.123.123.123。其他配置参考 https://zhuanlan.zhihu.com/p/222452460。配置 IdentityFile 为本机私钥的位置。windows下使用 git bash。2、打开.ssh/config文件。1、若本地已生成密钥对。此时就可以免密登录了。
2025-04-13 14:27:58
301
原创 事务,事务的四大特性,事务隔离级别
事务,是一组操作的集合,它是一个不可分割的最小操作单元,事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。
2024-03-13 21:33:05
451
原创 单例模式(Java)
单例设计模式分类两种: 饿汉式:类加载就会导致该单实例对象被创建 懒汉式:类加载不会导致该单实例对象被创建,而是首次使用该对象时才会创建。
2024-03-12 15:53:54
429
1
原创 ArrayList源码分析、与LinkedList区别
ArrayList 是动态数组的数据结构实现、LinkedList 是双向链表的数据结构实现
2023-09-07 21:19:53
116
1
原创 枚举、暴力(python)
本文展示了三种常见枚举问题的Python实现方法:指数型枚举(求子集)、组合型枚举(求组合)和排列型枚举(求排列)。对每种问题,都提供了非递归(位运算或itertools库)和递归两种实现方式。
2023-03-27 17:47:41
312
原创 C. Factorials and Powers of Two
Codeforces Round 774 (Div. 2) C. Factorials and Powers of Two
2023-03-22 13:55:20
110
原创 python实现ST表
ST表是一种用于高效解决区间最大值查询(RMQ)问题的数据结构。通过预处理,将每个区间[i, i+2^j-1]的最大值存储在二维数组f中。预处理分为两步:先用动态规划求出log2(n)的整数值,再通过倍增思想填充f数组。查询时,找到合适的k使得2^k覆盖查询区间,通过比较两个子区间的最大值得到结果。该算法预处理时间复杂度为O(nlogn),查询时间为O(1),适用于静态数据的快速区间查询。
2023-03-07 16:04:39
399
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅