文章目录
关于最小生成树和二分图的几个算法
关于最小生成树的prim算法和kruskal算法的b站优质视频讲解链接
1 Prim
1.1 Prim算法求最小生成树
问题描述
解题思路
prim 算法干的事情是:给定一个无向图,在图中选择若干条边把图的所有节点连起来。要求边长之和最小。在图论中,叫做求最小生成树。
prim 算法采用的是一种贪心的策略。
每次将离连通部分的最近的点和点对应的边加入的连通部分,连通部分逐渐扩大,最后将整个图连通起来,并且边长之和最小。
AC代码
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 510, INF = 0x3f3f3f3f;
int n, m;
int g[N][N]; //稠密图采用邻接矩阵建图
int dist[N]; // dist数组的含义是第i个到连通块的最短距离
bool st[N]; //判断第i个点是否在连通块中
int prim()
{
memset(dist, 0x3f, sizeof dist); //初始化dist数组中的每一个点到连通块的距离为正无穷
int res = 0; // res用来存储当前连通块(最小生成树)中的边权和
dist[1] = 0; //初始时将1号点加入到连通块中
for (int i = 0; i < n; i++) //迭代n次
{
int t = -1; // t是每次迭代需要找的点
for (int j = 1; j <= n; j++) //通过枚举每一个不在连通块中的点,找到当前点到连通块中距离最短的点
{
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
}
//如果是孤立点,直接返回INF
if (dist[t] == INF)
return INF;
//将点加入到连通块中
st[t] = true;
//更新res
res += dist[t];
//接下来用新加入的点去更新其他非连通块中的点的dist的值
for (int j = 1; j <= n; j++)
{
if (!st[j] && dist[j] > g[t][j])
dist[j] = g[t][j];
}
}
// n次迭代后,连通块就是最小生成树,res就是树的边权和
return res;
}
int main()
{
cin >> n >> m;
memset(g, 0x3f, sizeof g);
while (m--)
{
int a, b, w;
cin >> a >> b >> w;
//无向图建图时当作有向图来建图
g[a][b] = min(g[a][b], w);
g[b][a] = min(g[b][a], w);
}
int t = prim();
if (t == INF)
puts("impossible");
else
cout << t << endl;
return 0;
}
2 Kruskal
2.1 Kruskal算法求最小生成树
问题描述
解题思路
AC代码
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 2e5 + 5, INF = 0x3f3f3f3f;
int n, m;
int p[N];
//结构体用于存储每条边的起点终点和权值
struct Edge
{
int a, b, w;
//重载小于号运算符,以w来排序
bool operator<(const Edge &W) const
{
return w < W.w;
}
} edge[N];
int find(int x) //并查集模板
{
if (p[x] != x)
p[x] = find(p[x]);
return p[x];
}
int kruskal()
{
sort(edge + 1, edge + m + 1); // kruskal算法的第一步以边权来进行排序
for (int i = 1; i <= n; i++)
p[i] = i; //并查集的初始化工作
int res = 0, cnt = 0; // res表示最小生成树的边权和,cnt表示目前已经连了几条边
for (int i = 1; i <= m; i++)
{
int a = edge[i].a, b = edge[i].b, w = edge[i].w; //提取每条边的各元素
a = find(p[a]), b = find(p[b]); //并查集求得a和b的祖宗节点
if (a != b) //如果祖宗节点不同,说明不在一个集合中,不构成环,可以将该点添加进来
{
p[a] = b; //将其放到一个集合中
cnt++;
res += w;
}
}
if (cnt < n - 1)
return INF; //如果最终最小生成树的边数小于n-1,说明不能构成最小生成树
else
return res;
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= m; i++)
{
int a, b, w;
cin >> a >> b >> w;
edge[i] = {a, b, w};
}
int t = kruskal();
if (t == INF)
puts("impossible");
else
cout << t << endl;
return 0;
}
3 染色法判定二分图
3.1 染色法判定二分图
问题描述
解题思路
AC代码
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 2e5 + 5;
int n, m;
int h[N], ne[N], e[N], idx;
int color[N]; // color数组表示第i个点的颜色,0表示未染色,1和2分别表示不同的颜色
//加边的模板
void add(int a, int b)
{
e[idx] = b;
ne[idx] = h[a];
h[a] = idx++;
}
bool dfs(int u, int c)
{
color[u] = c; //将该点进行染色
for (int i = h[u]; i != -1; i = ne[i]) //枚举与该点邻接的所有边
{
int j = e[i];
if (!color[j]) //如果没有被染色
{
//将该点染成与u相反的颜色并进行递归
if (!dfs(j, 3 - c))
return false;
}
//否则如果该点染色了并且与u同色,那么返回false
else if (color[j] == c)
return false;
}
//都通过就返回true
return true;
}
int main()
{
cin >> n >> m;
memset(h, -1, sizeof h);
for (int i = 1; i <= m; i++)
{
int a, b;
cin >> a >> b;
//无向图建图加边
add(a, b);
add(b, a);
}
//初始化一个flag变量
bool flag = true;
for (int i = 1; i <= n; i++) //枚举每一个点
{
if (!color[i]) //如果该点未被染色,那么就用dfs染一下
{
if (!dfs(i, 1)) //如果对于这个点返回的false,说明产生了矛盾,不是二分图
{
flag = false;
break;
}
}
}
if (flag)
puts("Yes");
else
puts("No");
return 0;
}
4.匈牙利算法
4.1 二分图的最大匹配
问题描述
解题思路
AC代码
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 510, M = 100010;
int n1, n2, m;
int h[N], e[M], ne[M], idx;
int match[N];
bool st[N];
//邻接表建图模板
void add(int a, int b)
{
e[idx] = b;
ne[idx] = h[a];
h[a] = idx++;
}
//匈牙利算法
bool find(int x)
{
//遍历与x相邻的每个点(就是每个男孩遍历自己喜欢的女孩)
for (int i = h[x]; i != -1; i = ne[i])
{
int j = e[i];
//如果在本轮配对中,这个女孩没有被预定
if (!st[j])
{
//那么预定这个女孩
st[j] = true;
//如果这个女孩暂时没有对象又或者她的对象可以找到其他女孩
if (match[j] == 0 || find(match[j]))
{
match[j] = x; //那么配对成功
return true;
}
}
}
//最后实在没有办法了,那么就返回false,表示不能配对成功
return false;
}
int main()
{
cin >> n1 >> n2 >> m;
memset(h, -1, sizeof h);
while (m--)
{
int a, b;
cin >> a >> b;
//无向图建图加边
add(a, b);
}
int res = 0;
for (int i = 1; i <= n1; i++) //枚举每一个男孩
{
memset(st, false, sizeof st); //每次枚举一个男孩时都要初始化女孩,让每个女孩都没有被预定
if (find(i))
res++; //每成功配对一组,答案数+1
}
cout << res << endl;
return 0;
}