
论文阅读
文章平均质量分 95
小西柚code
须知少时凌云志,曾许人间第一流。
展开
-
《Object Detection in 20 Years: A Survey》论文超详细解读(翻译+脑图)
作为计算机视觉领域中最基础且最具挑战性的问题之一,物体检测近年来受到了广泛关注。在过去的二十年里,我们见证了物体检测技术的飞速发展及其对整个计算机视觉领域产生的深远影响。如果将当今的物体检测技术视为由深度学习驱动的一场革命,那么回溯到20世纪90年代,我们可以看到早期计算机视觉中创新思维和长远规划的设计。本文广泛回顾了这一快速发展的研究领域,从技术演进的角度出发,时间跨度超过四分之一个世纪(从20世纪90年代到2022年)。原创 2024-06-18 02:52:30 · 2726 阅读 · 0 评论 -
《Low-Light Image Enhancement via Structure Modeling and Guidance》论文超详细解读(翻译+精读)
今天精读的是一篇来自2023年CVPR的一篇论文,主要还是跟低光图像增强有关。目录前言Abstract —摘要翻译精读一、Introduction—简介翻译精读二、Related Work—相关工作A. Low-light enhancement with learning—基于学习的低光增强翻译精读B. Generative model for restoration—生成模型在修复任务中的应用翻译精读三、Method—方法3.1. Appearance Modeling—外观建模翻译精读。原创 2024-06-06 20:56:26 · 2046 阅读 · 0 评论 -
《Learning to See in the Dark》论文超详细解读(翻译+精读)
低光成像是一项挑战,主要由于光子数量少和信噪比(SNR)低。短曝光图像容易受到噪声影响,而长曝光虽能增加亮度,却可能导致模糊且往往不切实际。虽然已提出多种去噪、去模糊和增强技术,但在极端条件下,如夜间视频速率成像时,它们的有效性有限。为了支持基于学习的低光图像处理流程的开发,我们引入了一组包含原始短曝光低光图像及其对应长曝光参考图像的数据集。利用这一数据集,我们基于全卷积网络的端到端训练,开发了一套低光图像处理流程。原创 2024-06-05 11:02:59 · 2562 阅读 · 0 评论