
Pytorch入门与实践
文章平均质量分 92
Pytorch入门与实践
timerring
Rhythmic trend
展开
-
PyTorch: 权值初始化
Pytorch:权值初始化梯度消失与梯度爆炸Xavier 方法与 Kaiming 方法Xavier 方法nn.init.calculate_gain()Kaiming 方法常用初始化方法原创 2023-07-16 15:24:04 · 1207 阅读 · 5 评论 -
PyTorch: 池化-线性-激活函数层
nn网络层-池化-线性-激活函数层池化层最大池化:nn.MaxPool2d()nn.AvgPool2d()nn.MaxUnpool2d()线性层激活函数层nn.Sigmoidnn.tanhnn.ReLU(修正线性单元)nn.LeakyReLUnn.PReLUnn.RReLU原创 2023-07-15 10:24:49 · 854 阅读 · 0 评论 -
PyTorch: nn网络层-卷积层
nn网络层-卷积层1D/2D/3D 卷积一维卷积二维卷积三维卷积二维卷积:nn.Conv2d()卷积尺寸计算简化版卷积尺寸计算完整版卷积尺寸计算卷积网络示例转置卷积:nn.ConvTranspose()转置卷积尺寸计算简化版转置卷积尺寸计算完整版简化版转置卷积尺寸计算原创 2023-07-13 09:33:26 · 537 阅读 · 1 评论 -
PyTorch模型容器与AlexNet构建
模型容器与AlexNet构建nn.Sequetial总结nn.ModuleListnn.ModuleDict容器总结AlexNet实现原创 2023-07-12 09:44:56 · 724 阅读 · 1 评论 -
PyTorch模型创建与nn.Module
模型创建与nn.Modulenn.Module总结原创 2023-07-11 09:40:41 · 309 阅读 · 0 评论 -
数据增强之图像变换与自定义transforms
torchvision.transforms.Padtorchvision.transforms.ColorJittertransforms.Grayscale(RandomGrayscale)transforms.RandomAffinetransforms.RandomErasingtransforms.Lambdatransforms 的组合与选择torchvision.transforms.RandomChoicetransforms.RandomApplytransforms.R原创 2023-07-10 09:15:28 · 666 阅读 · 0 评论 -
数据增强之裁剪、翻转与旋转
数据增强 Data Augmentation裁剪Croptransforms.CenterCroptransforms.RandomCroptransforms.RandomResizedCroptransforms.FiveCrop(TenCrop)翻转Fliptransforms.RandomHorizontalFlip(RandomVerticalFlip)transforms.RandomVerticalFlip(p=1)旋转Rotationtransforms.RandomRo原创 2023-07-09 14:39:37 · 697 阅读 · 0 评论 -
transforms机制与数据标准化
图像预处理 transformstransforms运行机制数据标准化transforms.normalizetransforms.Normalize原创 2023-07-08 11:15:50 · 362 阅读 · 0 评论 -
Pytorch: 数据读取机制Dataloader与Dataset
数据读取机制Dataloader与DatasetDataLoader 与 Datasettorch.utils.data.DataLoader区分Epoch、Iteration、Batchsizetorch.utils.data.Dataset关于读取数据原创 2023-07-07 10:43:23 · 330 阅读 · 0 评论 -
Pytorch: autograd与逻辑回归的实现
autograd 自动求导系统torch.autograd.backwardtorch.autograd.grad逻辑回归 Logistic Regression逻辑回归线性回归对数回归机器学习模型训练步骤逻辑回归的实现原创 2023-07-06 15:02:39 · 474 阅读 · 1 评论 -
PyTorch: 计算图与动态图机制
文章目录计算图PyTorch的动态图机制计算图计算图是用来描述运算的有向无环图计算图有两个主要元素:结点 Node边 Edge结点表示数据:如向量,矩阵,张量边表示运算:如加减乘除卷积等用计算图表示:y = (x+ w) * (w+1)a = x + wb = w + 1y = a * bimage-20221007140501247计算图与梯度求导y = (x+ w) * (w+1)a = x + wb = w + 1y = a * bimage原创 2022-10-31 09:37:44 · 786 阅读 · 0 评论 -
PyTorch: 张量的变换、数学运算及线性回归
文章目录张量变换1.torch.reshape2.torch.transpose3.torch.t()4.torch.squeeze()5.torch.unsqueeze()张量的数学运算1.加减乘除2.对数,指数,幂函数3.三角函数应用:线性回归张量变换1.torch.reshapetorch.reshape(input,shape)功能:变换张量形状注意事项:当张量在内存中是连续时,新张量与 input 共享数据内存input : 要变换的张量shape 新张量原创 2022-10-30 10:13:49 · 968 阅读 · 3 评论 -
PyTorch: 张量的拼接、切分、索引
文章目录一、张量拼接与切分1.1 torch.cat1.2 torch.stack1.3 torch.chunk1.4 torch.split二、张量索引2.1 torch.index_select2.2 torch.masked_select一、张量拼接与切分1.1 torch.cat功能:将张量按维度dim 进行拼接tensors : 张量序列dim: 要拼接的维度 t = torch.ones((2, 3)) t_0 = torch.cat([t, t],原创 2022-10-29 09:42:00 · 1838 阅读 · 3 评论 -
PyTorch : 了解Tensor(张量)及其创建方法
文章目录认识张量Tensor与 VariableTensor张量的创建一、直接创建torch.tensor()torch.from_numpy(ndarray)二、依据数值创建2.1 torch.zeros()2.2 torch.zeros_like()2.3 torch. ones()2.4 torch. ones_like()2.5 torch. full()2.6 torch.full_like()2.7 torch. arange2.8 torch. linspace原创 2022-10-28 18:07:29 · 1356 阅读 · 1 评论 -
Pytorch、CUDA和cuDNN的安装图文详解win11(解决版本匹配问题)
CUDA的安装1.查询支持的最高版本2.查询Pytoch与cuDNN版本3.下载CUDA4.安装CUDA5.验证CUDA是否安装成功cuDNN的安装验证是否安装成功Pytorch安装下载torch下载torchvisionCUDA的卸载可能出现的问题:CUDA和cuDNN版本不匹配CUDA和Pytorch版本不匹配cuDNN和Pytorch版本不匹配显卡不支持CUDA该版本已经装完部分,发现版本不匹配准备卸载。说在前面的话!在ubuntu系统下,可以尝试装多个cud原创 2022-10-27 13:00:58 · 6427 阅读 · 1 评论 -
PyTorch的简介与背景知识
2017 年 1 月, FAIR (Facebook AI Research )发布 PyTorch。PyTorch是在 Torch 基础上用python 语言重新打造的一款深度学习框架。Torch是采用 Lua 语言为接口的机器学习框架,但因 Lua 语言较为小众,导致 Torch 知名度不高。原创 2022-10-23 11:21:52 · 2584 阅读 · 0 评论