《车间调度及其遗传算法》学习——前言

今天开始逐步学习王凌老师主编的《车间调度及其遗传算法》一书,并做一些笔记。

调度的任务是根据生产目标和约束,为每个加工对象确定具体的加工路径、时间、机器和操作等。优良的调度策略对于提高生产系统的最优性提高经济效益,有着极大作用。

 

王凌老师的这本书主要由5章组成:

第1章介绍调度问题与计算复杂性,包括对工件加工数据和特征机器加工环境加工性能指标的描述,进而给出调度问题的表示和分类,并着重介绍Job Shop和Flow Shop两类典型调度问题;其次,对现有的调度算法进行分类,并介绍多种常用的邻域搜索算法;最后,对计算复杂性和NP等基本概念作简单介绍。

第2章介绍遗传算法的理论与实现技术,首先阐述遗传算法的基本优化流程、模式定理和隐含并行性;其次介绍遗传算法的收敛性理论,包括算法的马尔可夫链描述、标准算法的收敛性和收敛速度估计,进而介绍一般可测状态空间上遗传算法的收敛性;然后,对遗传算法的1.编码、2.适配值函数、3.算法参数、4.算法操作、5.终止条件的设计进行介绍,并阐述遗传算法的改进研究和一种免疫遗传算法;最后介绍并行遗传算法。

第3章介绍Job Shop调度问题及其遗传算法设计,首先对Job Shop调度进行描述,并介绍若干典型的调度问题;其次,介绍Job Shop调度的多种遗传算法编码设计、算法操作和框架设计;进而,介绍Job Shop调度的一种有效混合遗传算法一类模糊Job Shop调度的遗传算法设计;最后,对Job Shop调度的遗传算法进行了简要综述。

第4章介绍Flow Shop调度及其遗传算法设计,首先对FlowShop调度及其启发式算法进行介绍,进
而介绍了若干典型Flow Shop调度问题,然后分别介绍置换Flow Shop调度、多目标Flow Shop调度、一类批量可变Flow Shop调度、模糊Flow Shop调度和混合Flow Shop调度及其遗传算法设计。

第5章介绍并行机调度及其遗传算法设计,具体包括最小化最大完成时间的遗传算法最小化最大加权推迟时间的遗传算法最小化公共交货期下E/T指标的遗传算法和一类带工艺约束并行机调度的遗传算法设计。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值