浅谈bfs

BFS即广度搜索,它不同于深度搜索 BFS的思想是一层层的去搜索直到搜索到终点,所以根据这一特性可以知道BFS搜索找到的点一点是最近的那一个点,常常用来解决迷宫问题;

用到的知识点:
队列;

BFS常用于迷宫,即从一点到另一点的最短路径,所以这里以一个迷宫来说明:

这里有一个5*5的迷宫,1是墙,0是路,那么从左上角走道右下角最少需要多少步呢?
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0
首先把终点设为3,走过的路设为2,可以得到这样的过程图:
在这里插入图片描述
在解决上述问题时我们先定义一个队列 将最先的点放在队头 然后开始沿各个方向去遍历 把越界的跳过 然后 再判断这个点是否已经被遍历过;

题目一:走迷宫
在这里插入图片描述
在这里插入图片描述

#include<algorithm>
#include<iostream>
#include<cstring>

const int N = 110;

using namespace std;

typedef pair<int ,int > PII;

int d[N][N],g[N][N];
int n,m;
PII q[N*N];
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};


int bfs()
{
    int hh=0,tt=0;
    q[0]={0,0};
    memset(d, -1, sizeof d);// 如果d[i][J]为-1则说明没有遍历过
    d[0][0]=0;
    
    while(hh<=tt)
    {
        auto t=q[hh++];//取出最开始的点当作对头开始遍历
        for(int i=0;i<4;i++)
        {
            int x=dx[i]+t.first,y=dy[i]+t.second;
            if(x>=0&&x<n&&y>=0&&y<m&&g[x][y]==0&&d[x][y]==-1)//判断条件
            {
                d[x][y]=d[t.first][t.second]+1;//比上一次要走的路多一
                q[++tt]={x,y};//将{x,y}插入队列队尾
            }
        }
    }
    
    return d[n-1][m-1];
    
}


int main()
{
    cin>>n>>m;
    for(int i=0;i<n;i++)
        for(int j=0;j<m;j++)
            cin>>g[i][j];
    cout<<bfs()<<endl;
    
    return 0;
}

问题二:
马的遍历
在这里插入图片描述
代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>

using namespace std;

const int N = 410;

int n,m;
typedef pair<int,int> PII;
int g[N][N];//那数组g来存储步数
PII q[N*N];
int dx[]={ 2,-2,2,-2,-1,1,-1,1},dy[]={1,1,-1,-1,2,2,-2,-2};//一共有八个方向


void bfs(int a,int b)
{
	int hh=0,tt=0;//定义头尾指针
	q[0]={a,b};//讲最开始的点存储到q中
	while(hh<=tt)
	{
		PII t=q[hh++];
		for(int i=0;i<8;i++)
		{
			int x=t.first+dx[i],y=t.second+dy[i];
			if(x<1||x>n||y<1||y>m)//如果越界则跳过
			continue;
			if(g[x][y]==-1)//如果为-1说明还没有被遍历过
			{
				g[x][y]=g[t.first][t.second]+1;//在这里不用顾虑之前把所有点初始化为-1,第一次时从x0,y0开始遍历的 g[X0][Y0]为0 在之后的头节点的值都不会再为-1了
				q[++tt]={x,y};
			}
		}
	}
}

int main()
{
	int x0,y0;
	cin>>n>>m>>x0>>y0;
	memset(g, -1, sizeof g);//全部初始化为-1;
	g[x0][y0]=0;
	bfs(x0,y0);
	for(int i=1;i<=n;i++)
		{
			for(int j=1;j<=m;j++)
			printf("%-5d",g[i][j]);
			cout<<endl;
		}
		cout<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值