BFS即广度搜索,它不同于深度搜索 BFS的思想是一层层的去搜索直到搜索到终点,所以根据这一特性可以知道BFS搜索找到的点一点是最近的那一个点,常常用来解决迷宫问题;
用到的知识点:
队列;
BFS常用于迷宫,即从一点到另一点的最短路径,所以这里以一个迷宫来说明:
这里有一个5*5的迷宫,1是墙,0是路,那么从左上角走道右下角最少需要多少步呢?
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0
首先把终点设为3,走过的路设为2,可以得到这样的过程图:
在解决上述问题时我们先定义一个队列 将最先的点放在队头 然后开始沿各个方向去遍历 把越界的跳过 然后 再判断这个点是否已经被遍历过;
题目一:走迷宫
#include<algorithm>
#include<iostream>
#include<cstring>
const int N = 110;
using namespace std;
typedef pair<int ,int > PII;
int d[N][N],g[N][N];
int n,m;
PII q[N*N];
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
int bfs()
{
int hh=0,tt=0;
q[0]={0,0};
memset(d, -1, sizeof d);// 如果d[i][J]为-1则说明没有遍历过
d[0][0]=0;
while(hh<=tt)
{
auto t=q[hh++];//取出最开始的点当作对头开始遍历
for(int i=0;i<4;i++)
{
int x=dx[i]+t.first,y=dy[i]+t.second;
if(x>=0&&x<n&&y>=0&&y<m&&g[x][y]==0&&d[x][y]==-1)//判断条件
{
d[x][y]=d[t.first][t.second]+1;//比上一次要走的路多一
q[++tt]={x,y};//将{x,y}插入队列队尾
}
}
}
return d[n-1][m-1];
}
int main()
{
cin>>n>>m;
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
cin>>g[i][j];
cout<<bfs()<<endl;
return 0;
}
问题二:
马的遍历
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int N = 410;
int n,m;
typedef pair<int,int> PII;
int g[N][N];//那数组g来存储步数
PII q[N*N];
int dx[]={ 2,-2,2,-2,-1,1,-1,1},dy[]={1,1,-1,-1,2,2,-2,-2};//一共有八个方向
void bfs(int a,int b)
{
int hh=0,tt=0;//定义头尾指针
q[0]={a,b};//讲最开始的点存储到q中
while(hh<=tt)
{
PII t=q[hh++];
for(int i=0;i<8;i++)
{
int x=t.first+dx[i],y=t.second+dy[i];
if(x<1||x>n||y<1||y>m)//如果越界则跳过
continue;
if(g[x][y]==-1)//如果为-1说明还没有被遍历过
{
g[x][y]=g[t.first][t.second]+1;//在这里不用顾虑之前把所有点初始化为-1,第一次时从x0,y0开始遍历的 g[X0][Y0]为0 在之后的头节点的值都不会再为-1了
q[++tt]={x,y};
}
}
}
}
int main()
{
int x0,y0;
cin>>n>>m>>x0>>y0;
memset(g, -1, sizeof g);//全部初始化为-1;
g[x0][y0]=0;
bfs(x0,y0);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
printf("%-5d",g[i][j]);
cout<<endl;
}
cout<<endl;
return 0;
}