牛客月赛27-巨木之森-(树的直径)

72 篇文章 1 订阅
这篇博客探讨了一种图论问题,即如何在一个连通图中找到多个起点,使得从这些起点遍历整个图的总花费不超过特定阈值m。文章介绍了两种不同的解决方案:一是通过寻找图的直径来确定起点,二是维护每个节点的上下最远距离。这两种方法都涉及到深度优先搜索,并在O(n^2)的时间复杂度内求解。最终,通过对所有可能起点的花费进行排序并累加,得到最大数量的起点组合。
摘要由CSDN通过智能技术生成

A

题意:
就是给你一个连通图,然后从一个点遍历整张图的花费就是走完所有点中途路径的花费。现在问你每个点都可以作为起点,问你最多可以选择多少个起点使得所有的花费总和不超过m。

思考:
明显只要知道一个点遍历整个图的最小花费,然后排序,能取多少取多少。那么难点就是怎么去找最小花费,经过画画图可以发现,如果从一个点遍历所有点,如果再回到原点那么代价就是所有边权的2倍,但是我们可以不需要回到原点,所以我们可以选择一个点停下来,也就是找一条距离起点最远的点,到这里就可以结束了。那么问题就转化为了,找出每个点距离它最远的点的距离。如果直接dfs,n个点,就是n*n的复杂度。那么有一个定理就是,对于图上的点,距离它最远的点就是这个图的直径的两个端点中的其中一个。那么我们把直径找出来,然后用端点去dfs两次找出每个点到这两个端点的距离即可。当然还有另一种做法,就是维护3个数组,对于每个点down1就是距离它下面最远的距离,down2是次远的,up是距离上面最远的。
然后也是类似的,就是那个找出树的直径比较偏定理。

代码:

直径作法
int T,n,m,k;
int maxn;
int va[N];
int dis1[N],dis2[N];

vector<PII > e[N];

void dfs(int now,int p,int dist[])
{
	if(dist[maxn]<dist[now]) maxn = now;
	for(auto t:e[now])
	{
		int spot = t.fi,w = t.se;
		if(spot==p) continue;
		dist[spot] = dist[now]+w;
		dfs(spot,now,dist);
	}
}

signed main()
{
	IOS;
	cin>>n>>m;
	int sum = 0;
	for(int i=1;i<n;i++)
	{
		int a,b,c;
		cin>>a>>b>>c;
		e[a].pb({b,c});
		e[b].pb({a,c});
		sum += c;
	}
	dfs(1,0,dis1); //从1找到距离它最远的点maxn 
	for(int i=0;i<=n;i++) dis1[i] = 0;
	dfs(maxn,0,dis1); //从maxn点开始找出距离它最远的点maxn,同时维护了每个点到它的距离
	dfs(maxn,0,dis2); //再从manx这个端点遍历他到每个点的距离
	vector<int > v;
	for(int i=1;i<=n;i++) v.pb(2*sum-max(dis1[i],dis2[i]));
	int ans = 0;
	sort(v.begin(),v.end());
	for(int i=0;i<v.size();i++)
	{
		if(m<v[i]) break;
		m -= v[i];
		ans++;
	}
	cout<<ans;
	return 0;
}
直接维护上下最远权值做法
int T,n,m,k;
int va[N];
int down1[N],down2[N],up[N];
int ne[N];

vector<PII > e[N];

void dfs1(int now,int p)
{
	for(auto t:e[now])
	{
		int spot = t.fi,w = t.se;
		if(spot==p) continue;
		dfs1(spot,now);
		if(down1[spot]+w>down1[now])
		{
			down2[now] = down1[now];
			down1[now] = down1[spot]+w;
			ne[now] = spot; //now的向下最远点是从哪个点过来的
		}
		else down2[now] = max(down2[now],down1[spot]+w); 
	}
}

void dfs2(int now,int p)
{
	for(auto t:e[now])
	{
		int spot = t.fi,w = t.se;
		if(spot==p) continue;
		if(ne[now]==spot) up[spot] = max(up[now]+w,down2[now]+w); //如果从这里过来的话那只能用down2了
		else up[spot] = max(up[now]+w,down1[now]+w);
		dfs2(spot,now);
	}
}

signed main()
{
	IOS;
	cin>>n>>m;
	int sum = 0;
	for(int i=1;i<n;i++)
	{
		int a,b,c;
		cin>>a>>b>>c;
		e[a].pb({b,c});
		e[b].pb({a,c});
		sum += c;
	}
	dfs1(1,0);
	dfs2(1,0);
	vector<int > v;
	for(int i=1;i<=n;i++) v.pb(2*sum-max(up[i],down1[i]));
	sort(v.begin(),v.end());
	int ans = 0;
	for(int i=0;i<v.size();i++)
	{
		if(m<v[i]) break;
		m -= v[i];
		ans++;
	}
	cout<<ans;
	return 0;
}

总结:
多多思考,总结经验。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值