题意:
给你一个n数组,然后每次查询一个区间,问你这个区间里面<x的数有多少个。
思考:
刚开始一看,感觉直接做不好做,应该就是莫队维护一下区间,然后树状数组插入删除就行了,但是出题人卡了莫队所以超时了。然后发现,其实不要那么麻烦,只要我对所有的l和r排序后,再一次一次查询就好了。
对于树状数组呢,能维护一段区间问题,只能维护前缀和后缀问题,并且只能维护一维东西,要么你是下标来的,要么是数字的权值来的。
值得注意的呢是,莫队去掉ll之后,得了40分,所以对于ll还是挺卡时间和空间的。
代码:
树状数组+离线操作:
struct Node{
int now,x;
int id;
}node[N];
int T,n,m,k;
int va[N];
int anw[N],cnt;
int tr[N],R = 1e5+5;
int bit(int x)
{
return x&(-x);
}
void update(int x,int value)
{
while(x<=R)
{
tr[x] += value;
x += bit(x);
}
}
int query(int x)
{
int sum = 0;
while(x)
{
sum += tr[x];
x -= bit(x);
}
return sum;
}
bool cmp(Node A,Node B)
{
return A.now<B.now;
}
signed main()
{
IOS;
cin>>n>>m;
for(int i=1;i<=n;i++) cin>>va[i];
for(int i=1;i<=m;i++)
{
int a,b,c;
cin>>a>>b>>c;
node[++cnt] = {a-1,c,i};
node[++cnt] = {b,c,i+m};
}
sort(node+1,node+1+cnt,cmp);
int idx = 1;
for(int i=1;i<=cnt;i++)
{
int id = node[i].id;
while(idx<=node[i].now&&idx<=n) update(va[idx++],1);
if(id<=m) anw[id] -= query(node[i].x);
else anw[id-m] += query(node[i].x);
}
for(int i=1;i<=m;i++) cout<<anw[i]<<"\n";
return 0;
}
莫队+树状数组:
struct Node{
int l,r;
int id;
int x;
}node[N];
int T,n,m,k;
int va[N];
int tr[N],R = 1e5+5;
int cnt[N],pos[N],siz;
int anw[N];
int bit(int x)
{
return x&(-x);
}
void update(int x,int value)
{
while(x<=R)
{
tr[x] += value;
x += bit(x);
}
}
int query(int x)
{
int sum = 0;
while(x)
{
sum += tr[x];
x -= bit(x);
}
return sum;
}
void add(int x)
{
update(va[x],1);
}
void sub(int x)
{
update(va[x],-1);
}
bool cmp(Node A,Node B)
{
if(pos[A.l]!=pos[B.l]) return pos[A.l]<pos[B.l];
return A.r<B.r;
}
signed main()
{
IOS;
cin>>n>>m;
for(int i=1;i<=n;i++) cin>>va[i];
siz = sqrt(n);
for(int i=1;i<=n;i++) pos[i] = i/siz;
for(int i=1;i<=m;i++)
{
int l,r,x;
cin>>l>>r>>x;
node[i] = {l,r,i,x};
}
sort(node+1,node+1+m,cmp);
int l = 1,r = 0;
for(int i=1;i<=m;i++)
{
while(node[i].l<l) add(--l);
while(node[i].r>r) add(++r);
while(node[i].l>l) sub(l++);
while(node[i].r<r) sub(r--);
anw[node[i].id] = query(node[i].x);
}
for(int i=1;i<=m;i++) cout<<anw[i]<<"\n";
return 0;
}
总结:
多多练习学的算法。