牛客练习赛91-魔法学院-(区间最大最小值更新+线段树)

C

题意:
就是给一个数组,然后有m个魔法,每个魔法可以让a,b的里面的值变为c,问你整个数组最大能是多少。

思考:
一看就是我以前做过的那道题希望,第一次知道怎么不用线段树区间修改最大最小值,其实线段树本来就可以。那个题用的是muiltiset来维护的,这个题也可以,当然也可以用优先队列,本质是一样的,贪心拿最大的,如果当前不能用了就仍了。但是复杂度不确定,所以线段树是最保险的。不过值得注意的是如果n特别大的时候,线段树是很容易炸空间的。

代码:

set:

int T,n,m,k;
int va[N];
char s[N];

vector<int > v[N];

signed main()
{
	IOS;
	cin>>n>>m>>s+1;
	for(int i=1;i<=n;i++) va[i] = (int)s[i];
	for(int i=1;i<=m;i++)
	{
		char ch;
		int a,b,c;
		cin>>a>>b>>ch;
		c = (int)ch;
		v[a].pb(c);
		v[b+1].pb(-c);
	}
	multiset<int > s;
	for(int i=1;i<=n;i++)
	{
		for(auto can:v[i])
		{
			if(can>0) s.insert(can);
			else s.erase(s.find(-can));
		}
		if(s.size()) va[i] = max(va[i],*s.rbegin());
	}
	int anw = 0;
	for(int i=1;i<=n;i++) anw += va[i];
	cout<<anw;
	return 0;
}

优先队列:
struct Node{
	int a,b;
	int c;
	bool operator<(const Node&A)const{
		return A.c>c;
	}
}node[N];

int T,n,m,k;
int va[N];
char s[N];

priority_queue<Node> q;

bool cmp(Node A,Node B)
{
	return A.a<B.a;
}

signed main()
{
	IOS;
	cin>>n>>m>>s+1;
	for(int i=1;i<=n;i++) va[i] = (int)s[i];
	for(int i=1;i<=m;i++)
	{
		char ch;
		int a,b,c;
		cin>>a>>b>>ch;
		c = (int)ch;
		node[i] = {a,b,c};
	}
	sort(node+1,node+1+m,cmp);
	int idx = 1;
	for(int i=1;i<=n;i++)
	{
		while(idx<=m&&node[idx].a<=i) q.push(node[idx++]);
		while(q.size())
		{
			auto now = q.top();
			int a = now.a,b = now.b,c = now.c;
			if(b<i) q.pop();
			else
			{
				if(va[i]<c) va[i] = c;
				break;
			}
		}
	}
	int anw = 0;
	for(int i=1;i<=n;i++) anw += va[i];
	cout<<anw;
	return 0;
}

线段树:
struct node{
	int L,R;
	int maxn;
	int laz;	
}t[4*N];

int T,n,m,k;
int va[N];
char s[N];

void pushup(int node)
{
	t[node].maxn = max(t[node_l].maxn,t[node_r].maxn);
}

void pushdown(int node)
{
	int laz = t[node].laz;
	if(laz)
	{
		t[node_l].laz = max(t[node_l].laz,laz);
		t[node_l].maxn = max(t[node_l].maxn,laz);
		t[node_r].laz = max(t[node_r].laz,laz);
		t[node_r].maxn = max(t[node_r].maxn,laz);
		t[node].laz = 0;
	}
}

void build(int node,int l,int r)
{
	t[node].L = l,t[node].R = r;
	if(l==r)
	{
		t[node].maxn = va[l];
		return ;
	}
	int mid = (l+r)>>1;
	build(node_l,l,mid);build(node_r,mid+1,r);
	pushup(node);
}

void update(int node,int l,int r,int value)
{
	if(t[node].L>=l&&t[node].R<=r)
	{
		t[node].maxn = max(t[node].maxn,value);
		t[node].laz = max(t[node].laz,value);
		return ;
	}
	pushdown(node);
	int mid = (t[node].L+t[node].R)>>1;
	if(l<=mid) update(node_l,l,r,value);
	if(r>mid) update(node_r,l,r,value);
	pushup(node);
}

int query(int node,int x)
{
	if(t[node].L==x&&t[node].R==x) return t[node].maxn;
	pushdown(node);
	int mid = (t[node].L+t[node].R)>>1;
	if(x<=mid) return query(node_l,x);
	else return query(node_r,x);
	pushup(node);
}

signed main()
{
	IOS;
	cin>>n>>m>>s+1;
	for(int i=1;i<=n;i++) va[i] = (int)s[i];
	build(1,1,n);
	for(int i=1;i<=m;i++)
	{
		char ch;
		int a,b,c;
		cin>>a>>b>>ch;
		c = (int)ch;
		update(1,a,b,c);
	}
	ll ans = 0;
	for(int i=1;i<=n;i++) ans += query(1,i);
	cout<<ans;
	return 0;
}

思考:
多多总结。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值