题意:
就是给一个数组,然后有m个魔法,每个魔法可以让a,b的里面的值变为c,问你整个数组最大能是多少。
思考:
一看就是我以前做过的那道题希望,第一次知道怎么不用线段树区间修改最大最小值,其实线段树本来就可以。那个题用的是muiltiset来维护的,这个题也可以,当然也可以用优先队列,本质是一样的,贪心拿最大的,如果当前不能用了就仍了。但是复杂度不确定,所以线段树是最保险的。不过值得注意的是如果n特别大的时候,线段树是很容易炸空间的。
代码:
set:
int T,n,m,k;
int va[N];
char s[N];
vector<int > v[N];
signed main()
{
IOS;
cin>>n>>m>>s+1;
for(int i=1;i<=n;i++) va[i] = (int)s[i];
for(int i=1;i<=m;i++)
{
char ch;
int a,b,c;
cin>>a>>b>>ch;
c = (int)ch;
v[a].pb(c);
v[b+1].pb(-c);
}
multiset<int > s;
for(int i=1;i<=n;i++)
{
for(auto can:v[i])
{
if(can>0) s.insert(can);
else s.erase(s.find(-can));
}
if(s.size()) va[i] = max(va[i],*s.rbegin());
}
int anw = 0;
for(int i=1;i<=n;i++) anw += va[i];
cout<<anw;
return 0;
}
优先队列:
struct Node{
int a,b;
int c;
bool operator<(const Node&A)const{
return A.c>c;
}
}node[N];
int T,n,m,k;
int va[N];
char s[N];
priority_queue<Node> q;
bool cmp(Node A,Node B)
{
return A.a<B.a;
}
signed main()
{
IOS;
cin>>n>>m>>s+1;
for(int i=1;i<=n;i++) va[i] = (int)s[i];
for(int i=1;i<=m;i++)
{
char ch;
int a,b,c;
cin>>a>>b>>ch;
c = (int)ch;
node[i] = {a,b,c};
}
sort(node+1,node+1+m,cmp);
int idx = 1;
for(int i=1;i<=n;i++)
{
while(idx<=m&&node[idx].a<=i) q.push(node[idx++]);
while(q.size())
{
auto now = q.top();
int a = now.a,b = now.b,c = now.c;
if(b<i) q.pop();
else
{
if(va[i]<c) va[i] = c;
break;
}
}
}
int anw = 0;
for(int i=1;i<=n;i++) anw += va[i];
cout<<anw;
return 0;
}
线段树:
struct node{
int L,R;
int maxn;
int laz;
}t[4*N];
int T,n,m,k;
int va[N];
char s[N];
void pushup(int node)
{
t[node].maxn = max(t[node_l].maxn,t[node_r].maxn);
}
void pushdown(int node)
{
int laz = t[node].laz;
if(laz)
{
t[node_l].laz = max(t[node_l].laz,laz);
t[node_l].maxn = max(t[node_l].maxn,laz);
t[node_r].laz = max(t[node_r].laz,laz);
t[node_r].maxn = max(t[node_r].maxn,laz);
t[node].laz = 0;
}
}
void build(int node,int l,int r)
{
t[node].L = l,t[node].R = r;
if(l==r)
{
t[node].maxn = va[l];
return ;
}
int mid = (l+r)>>1;
build(node_l,l,mid);build(node_r,mid+1,r);
pushup(node);
}
void update(int node,int l,int r,int value)
{
if(t[node].L>=l&&t[node].R<=r)
{
t[node].maxn = max(t[node].maxn,value);
t[node].laz = max(t[node].laz,value);
return ;
}
pushdown(node);
int mid = (t[node].L+t[node].R)>>1;
if(l<=mid) update(node_l,l,r,value);
if(r>mid) update(node_r,l,r,value);
pushup(node);
}
int query(int node,int x)
{
if(t[node].L==x&&t[node].R==x) return t[node].maxn;
pushdown(node);
int mid = (t[node].L+t[node].R)>>1;
if(x<=mid) return query(node_l,x);
else return query(node_r,x);
pushup(node);
}
signed main()
{
IOS;
cin>>n>>m>>s+1;
for(int i=1;i<=n;i++) va[i] = (int)s[i];
build(1,1,n);
for(int i=1;i<=m;i++)
{
char ch;
int a,b,c;
cin>>a>>b>>ch;
c = (int)ch;
update(1,a,b,c);
}
ll ans = 0;
for(int i=1;i<=n;i++) ans += query(1,i);
cout<<ans;
return 0;
}
思考:
多多总结。