CFdiv2-Pie Rules-(线性dp+博弈状态转移)

C

题意:
就是给你n个数字,Alice和Bob玩一个游戏,首先有个特权,这个特权就是可以让当前的值给自己或者给对方,如果给自己,那么特权转移到对方,如果值给对方,那么特权还是自己的。现在Bob先有特权,问你每个人的得分是多少,当然每个人都会按照自己得分最高的情况去拿。

思考:

  1. 当时思考了会博弈,感觉不太好博弈,这种情况太多。然后我就想,不论做啥题目,不能把思想仅仅局限在某个算法或者想法上面。然后我就想了想是不是可以dp,但是一想转移的时候,都是按Bob最好的方面去转移,怎么去体现让Alice走自己最好的呢?到这里就有点卡住了。
  2. 实际上,把转移方式换一下?比如dp[i]代表走到第i个点并且有特权,Bob最多可以获得多少分,那么无非就是两种可能,一种是va[i]我不选,那么dp[i] = max(dp[i],dp[i+1]),下一次的主权还在我。一种是va[i]我选择了,那么转移的时候就要让后面的Alice是最优的你才能来转移,因为现在主权不在你了。那么dp[i+1]就是在第i+1个点并且人有特权的最大可以获得的值,那么这个值肯定就是Alice想要的,因为他要让自己最大。所以dp[i] = max(dp[i],va[i]+sum[i+1]-dp[i+1])。所以这个最优态并不是仅仅对某一个人说的,dp[i]就是代表某个人在i有特权可以获得的最大权值。
  3. 当然还有一种dp方式,就是dp[i][1]代表当权有特权,dp[i][0]代表当前没有特权,那么转移就是dp[i][1] = max(dp[i+1][1],dp[i+1][0]+va[i]);dp[i][0] = min(dp[i+1][1],dp[i+1][0]+va[i]);注意,dp[i][0]的时候是去min,因为特权不在我,所以我就会拿一个最小的,这样也符合博弈。

代码:

方法1#include<bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define db double
#define int long long
#define PII pair<int,int >
#define mem(a,b) memset(a,b,sizeof(a))
#define IOS std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);

using namespace std;
const int mod = 1e9+7,inf = 1e18;
const int N = 2e5+10,M = 2010;

int T,n,m,k;
int va[N];
int dp[N];
int sum[N];

signed main()
{
	IOS;
	cin>>n;
	for(int i=1;i<=n;i++) cin>>va[i];
	for(int i=n;i>=1;i--)
	{
		sum[i] = sum[i+1]+va[i];
		dp[i] = max(dp[i+1],va[i]+sum[i+1]-dp[i+1]);
	}
	cout<<sum[1]-dp[1]<<" "<<dp[1]<<"\n";
	return 0;
}
方法2:
#include<bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define db double
#define int long long
#define PII pair<int,int >
#define mem(a,b) memset(a,b,sizeof(a))
#define IOS std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);

using namespace std;
const int mod = 1e9+7,inf = 1e18;
const int N = 2e5+10,M = 2010;

int T,n,m,k;
int va[N];
int dp[N][2];

signed main()
{
	IOS;
	cin>>n;
	int sum = 0;
	for(int i=1;i<=n;i++) cin>>va[i],sum += va[i];
	dp[n][1] = va[n];
	for(int i=n-1;i>=1;i--)
	{
		dp[i][1] = max(dp[i+1][1],dp[i+1][0]+va[i]);
		dp[i][0] = min(dp[i+1][1],dp[i+1][0]+va[i]);
	}
	cout<<sum-dp[1][1]<<" "<<dp[1][1]<<"\n";
	return 0;
}

总结:
多多思考,多多把dp的转移,和博弈的状态想清楚。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值