Kaggle-Predicting Optimal Fertilizers-(多分类+xgboost+同一特征值多样性)

Predicting Optimal Fertilizers

题意:

给出土壤的特性,预测出3种最佳的肥料

数据处理:

1.有数字型和类别型,类别不能随意换成数字,独热编码。cat可以直接处理category类型。
2.构造一些相关土壤特性特征
3.由于label是category类型,但是xgb不可以处理category类型,因此需要先编码,最后求出结果之后再解码。

建立模型:

1.catboost交叉验证、xgboost交叉验证

代码:
import os
import sys
import warnings
import numpy as np
import pandas as pd
import seaborn
from catboost import CatBoostRegressor, CatBoostClassifier
from lightgbm import LGBMRegressor
from matplotlib import pyplot as plt
import lightgbm
from mlxtend.regressor import StackingCVRegressor
from sklearn import clone
from sklearn.ensemble import VotingRegressor, StackingClassifier, StackingRegressor
from sklearn.linear_model import Lasso, LogisticRegression, RidgeCV
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score, make_scorer, mean_squared_log_error
from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score, StratifiedKFold
from sklearn.preprocessing import StandardScaler, LabelEncoder, PolynomialFeatures
from xgboost import XGBRegressor, XGBClassifier
from sklearn.preprocessing import RobustScaler
from sklearn.model_selection import KFold
from sklearn.linear_model import Ridge
from catboost import Pool, CatBoostClassifier


def init():
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'  # 仅输出错误日志
    warnings.simplefilter('ignore')  # 忽略警告日志
    pd.set_option('display.width', 1000)
    pd.set_option('display.max_colwidth', 1000)
    pd.set_option("display.max_rows", 1000)
    pd.set_option("display.max_columns", 1000)


def show_dataframe(df):
    print("查看特征值和特征值类型\n" + str(df.dtypes) + "\n" + "-" * 100)
    print("查看前10行信息\n" + str(df.head()) + "\n" + "-" * 100)
    print("查看每个特征值的各种数据统计信息\n" + str(df.describe()) + "\n" + "-" * 100)
    print("输出重复行的个数\n" + str(df.duplicated().sum()) + "\n" + "-" * 100)
    print("查看每列的缺失值个数\n" + str(df.isnull().sum()) + "\n" + "-" * 100)
    print("查看缺失值的具体信息\n" + str(df.info()) + "\n" + "-" * 100)
    # print("输出X所有值出现的是什么,还有对应出现的次数\n" + str(df['X'].value_counts()) + "\n" + "-" * 100)


def show_relation(data, colx, coly):
    if data[colx].dtype == 'object' or data[colx].dtype == 'category' or len(data[colx].unique()) < 20:
        seaborn.boxplot(x=colx, y=coly, data=data)
    else:
        plt.scatter(data[colx], data[coly])
    plt.xlabel(colx)
    plt.ylabel(coly)
    plt.show()


def mapk(actual, predicted, k=3):
    def apk(a, p, k):
        score = 0.0
        for i in range(min(k, len(p))):
            if p[i] == a:
                score += 1.0 / (i + 1)
                break
        return score

    return np.mean([apk(a, p, k) for a, p in zip(actual, predicted)])


if __name__ == '__main__':
    init()

    df_train = pd.read_csv('/kaggle/input/playground-series-s5e6/train.csv')
    df_test = pd.read_csv('/kaggle/input/playground-series-s5e6/test.csv')
    df_train_additional = pd.read_csv('/kaggle/input/fertilizer-prediction/Fertilizer Prediction.csv')
    pd.concat([df_train, df_train_additional], ignore_index=True)

    print("Start Feature enggering" + "-" * 70 + "\n")
    df_all = pd.concat([df_train.drop(['id', 'Fertilizer Name'], axis=1), df_test.drop(['id'], axis=1)], axis=0)

    df_all['Temp_Humidity_Interaction'] = df_all['Temparature'] * df_all['Humidity']
    df_all['N_P_Ratio'] = df_all['Nitrogen'] / (df_all['Phosphorous'].replace(0, 1e-6))
    df_all['K_P_Ratio'] = df_all['Potassium'] / (df_all['Phosphorous'].replace(0, 1e-6))
    df_all['Soil_Crop_Combination'] = df_all['Soil Type'].astype(str) + '_' + df_all['Crop Type'].astype(str)

    df_all['P_to_K'] = df_all['Phosphorous'] / (df_all['Potassium'] + 1e-5)
    df_all['Total_NPK'] = df_all['Nitrogen'] + df_all['Phosphorous'] + df_all['Potassium']
    df_all['Climate_Index'] = (df_all['Temparature'] + df_all['Humidity']) / 2
    df_all['Water_Stress'] = df_all['Humidity'] - df_all['Moisture']

    original_numerical_cols = ['Temparature', 'Humidity', 'Moisture', 'Nitrogen', 'Potassium', 'Phosphorous']
    for col in original_numerical_cols:
        df_all[f'{col}_Binned'] = df_all[col].astype(str)

    numerical_features = ['Temparature', 'Humidity', 'Moisture', 'Nitrogen', 'Potassium', 'Phosphorous',
                          'Temp_Humidity_Interaction', 'N_P_Ratio', 'K_P_Ratio']
    categorical_features = ['Soil Type', 'Crop Type', 'Soil_Crop_Combination']
    categorical_features.extend([f'{col}_Binned' for col in original_numerical_cols])

    poly_features_to_transform = original_numerical_cols
    poly = PolynomialFeatures(degree=2, include_bias=False)
    df_all_transformers = poly.fit_transform(df_all[poly_features_to_transform])

    poly_feature_names = poly.get_feature_names_out(poly_features_to_transform)
    df_all = df_all.drop(columns=poly_features_to_transform)
    df_all = pd.concat([df_all, pd.DataFrame(df_all_transformers, columns=poly_feature_names,index=df_all.index)], axis=1)

    numerical_features = df_all.select_dtypes(include=['int64', 'float64']).columns.tolist()
    categorical_features = df_all.select_dtypes(exclude=['int64', 'float64']).columns.tolist()

    all_features_ordered = numerical_features + categorical_features
    df_all = df_all[all_features_ordered]

    all_categories_union = {}
    for col in categorical_features:
        if col in df_all.columns:
            all_categories_union[col] = pd.concat([
                df_all[col],
            ], axis=0).astype(str).unique()
        else:
            print(f"Warning: Categorical column '{col}' not found after feature engineering. Skipping conversion.")

    for col in categorical_features:
        if col in df_all.columns:
            df_all[col] = pd.Categorical(df_all[col], categories=all_categories_union[col])

    le = LabelEncoder()
    X_train = df_all[:df_train.shape[0]]
    Y_train = df_train['Fertilizer Name']
    Y_train = le.fit_transform(Y_train)
    X_test = df_all[df_train.shape[0]:]

    print("Training model" + "-" * 70 + "\n")
    model_xgb = XGBClassifier(
        max_depth=8,  # 降低树深度
        colsample_bytree=0.5,  # 控制特征采样比例
        subsample=0.7,  # 控制数据采样比例
        n_estimators=3000,  # 减少迭代轮数
        learning_rate=0.03,  # 降低学习率
        gamma=0.5,  # 增加分裂难度
        max_delta_step=2,  # 限制权重更新步长
        reg_alpha=5,  # 增强L1正则化
        reg_lambda=3,  # 增强L2正则化
        early_stopping_rounds=100,  # 更早停止训练
        objective='multi:softprob',
        random_state=13,
        enable_categorical=True,
        tree_method='hist',
        device='cuda'
    )


    kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
    pred_xgb = np.zeros((X_test.shape[0], len(le.classes_)))

    for fold, (train_idx, val_idx) in enumerate(kfold.split(X_train, Y_train)):
        print(f"\nFold {fold + 1}/{kfold.n_splits}")

        x_fold_train, x_fold_val = X_train.iloc[train_idx], X_train.iloc[val_idx]
        y_fold_train, y_fold_val = Y_train[train_idx], Y_train[val_idx]

        model_xgb.fit(
            x_fold_train, y_fold_train,
            eval_set = [(x_fold_val, y_fold_val)],
            verbose = 100,
        )

        pred_xgb += model_xgb.predict_proba(X_test) / kfold.n_splits

    pred_top3_xgb = np.argsort(pred_xgb, axis=1)[:, -3:][:, ::-1]
    top3_label = []
    for row in pred_top3_xgb:
        converted = [le.classes_[i] for i in row]
        top3_label.append(converted)

    submission = pd.DataFrame({
        'id': df_test['id'],
        'Fertilizer Name': [' '.join(preds) for preds in top3_label],
    })
    submission.to_csv('/kaggle/working/submission.csv', index=False)
#xgb0.35642
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值