图解一维卷积(Conv1d, TDNN)计算中维度变化

有如下输入:表示 298 个时间帧,每个时间帧有 80 个维度的输入;
在这里插入图片描述

一般情况(dilation=1)

Conv1d(in_channels=80, out_channels=512, dilation=1, kernel_size=5, stride=1)

表示输入通道为 80,输出通道为 512;

那么,卷积核为:(80, 5, 512),下面这样的卷积核一共有 512 个;

在这里插入图片描述

以下展示的是单个卷积核的运算,大小为 5 的卷积核以步长为 1 移动最终得到时间帧长度为 298-(5-1)=294;

在这里插入图片描述

dilation=2

Conv1d(in_channels=512, out_channels=512, dilation=2, kernel_size=3, stride=1)

卷积核大小为 (512, 512, 3) 但是其为膨胀卷积,所以卷积核实际大小为 5;计算方式为:

在这里插入图片描述

可见,卷积核大小为 3,但是中间进行了膨胀,即黑色部分不进行运算;最终时间帧为 294-(5-1)=290;

dilation=3

Conv1d(in_channels=512, out_channels=512, dilation=3, kernel_size=3, stride=1)

卷积核大小为 (512, 512, 3) 但是 dilation=3,因此最终为 7;有如下图:

在这里插入图片描述

最终时间帧为 290-(7-1)=284;

kernel_size=1

Conv1d(in_channels=512, out_channels=512, dilation=1, kernel_size=1, stride=1)

可以当作全连接层:

在这里插入图片描述

因此输出维度仍然为 284;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值