行列式
排列
由自然数 1 , 2 , … , n 1,2,\dots,n 1,2,…,n 组成的一个有序数组称为一个 n n n 阶排列。
123 123 123 是一个排列,但 124 124 124 不是一个排列,因为中间不能缺数。
逆序数
在排列中,如果一个小数在一个大数后面,那么就构成一个逆序。排列中逆序的总数称为这个排列的逆序数。
现有一个排列 52413 52413 52413, 5 5 5 后面比 5 5 5 小的数有 4 4 4 个,故逆序数为 4 4 4,同理可得, 2 2 2 后面比 2 2 2 小的数只有 1 1 1 个,故逆序数为 1 1 1,…,所以排列 52413 52413 52413 的逆序数 N ( 52413 ) = 4 + 1 + 2 = 7 N(52413)=4+1+2=7 N(52413)=4+1+2=7。
逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列。
排列 52413 52413 52413 就是一个奇排列。
排列中任意两个元素对换,排列奇偶性改变。
先考虑相邻元素对换:相邻元素对换有两种情况,第一种是 a 左 < a 右 a_{左}<a_{右} a左<a右,对换后排列逆序数 + 1 +1 +1;第二种是 a 左 > a 右 a_{左}>a_{右} a左>a右,对换后排列逆序数 − 1 -1 −1,由此证明相邻元素对换后排列奇偶性改变。
再考虑排列中任意两个元素对换:假设将要对换的两个元素之间有 s s s 个数,即 a 左 − 1 , a 左 , … ⏟ s 个数 , a 右 , a 右 + 1 a_{左-1},a_{左},\underbrace{\dots}_{s个数},a_{右},a_{右+1} a左−1,a左,s个数 …,a右,a右+1。现进行 s s s 次相邻对换,可以将排列变成 a 左 − 1 , … ⏟ s 个数 , a 左 , a 右 , a 右 + 1 a_{左-1},\underbrace{\dots}_{s个数},a_{左},a_{右},a_{右+1} a左−1,s个数 …,a左,a右,a右+1,再进行 s + 1 s+1 s+1 次相邻对换,完成元素对换,即 a 左 − 1 , a 右 , … ⏟ s 个数 , a 左 , a 右 + 1 a_{左-1},a_{右},\underbrace{\dots}_{s个数},a_{左},a_{右+1} a左−1,a右,s个数 …,a左,a右+1。即总共进行 2 s + 1 2s+1 2s+1 次相邻对换,根据之前得到的结论,证明任意两个元素对换,排列奇偶性改变。
奇、偶排列变成标准排列的对换次数依次是奇数和偶数。
标准排列逆序数为 0 0 0,由上结论可知,相邻元素对换,排列逆序数只能 + 1 +1 +1 或 − 1 -1 −1,因此要将排列逆序数变成 0 0 0,奇排列必须进行奇数次对换,偶排列必须进行偶数次对换。
二阶行列式
∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 . \left |\begin{array}{cccc} a_{11} &a_{12} \\ a_{21} &a_{22} \\ \end {array}\right| =a_{11}a_{22}-a_{12}a_{21}. a11a21a12a22 =a11a22−a12a21.
三阶行列式
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 13 a 22 a 31 − a 12 a 21 a 33 − a 11 a 23 a 32 . \left |\begin{array}{cccc} a_{11} &a_{12} &a_{13} \\ a_{21} &a_{22} &a_{23} \\ a_{31} &a_{32} &a_{33} \\ \end{array}\right|= a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32} -a_{13}a_{22}a_{31}-a_{12}a_{21}a_{33}-a_{11}a_{23}a_{32}. a11a21a31a12a22a32a13a23a33 =a11a22a33+a12a23a31+a13a21a32−a13a22a31−a12a21a33−a11a23a32.
行列式中代数项的符号取决于列标排列是奇排列还是偶排列。例如代数项 a 12 a 23 a 31 a_{12}a_{23}a_{31} a12a23a31 的列标排列是 231 231 231,这是一个偶排列,所以符号为 + + +;而代数项 a 12 a 21 a 33 a_{12}a_{21}a_{33} a12a21a33 的列标排列是 213 213 213,这是一个奇排列,所以符号为 − - −。
行标排列都是 123 123 123。
n n n 阶行列式
每一项都取自行列式中不同行不同列的元素的乘积,行号固定为标准排列 123 … n 123\dots n 123…n。
n n n 阶行列式记作 det ( a i j ) n × n \det(a_{ij})_{n\times n} det(aij)n×n 或者 det ( a i j ) \det(a_{ij}) det(aij)。
行列式按行展开:
∣
a
11
a
12
…
a
1
n
a
21
a
22
…
a
2
n
⋮
⋮
⋮
a
n
1
a
n
2
…
a
n
n
∣
=
∑
p
1
p
2
…
p
n
(
−
1
)
N
(
p
1
p
2
…
p
n
)
a
1
p
1
a
2
p
2
…
a
n
p
n
.
\left |\begin{array}{cccc} a_{11} &a_{12} &\dots &a_{1n} \\ a_{21} &a_{22} &\dots &a_{2n} \\ \vdots &\vdots & &\vdots \\ a_{n1} &a_{n2} &\dots &a_{nn} \\ \end{array}\right|= \sum_{p_1p_2\dots p_n}(-1)^{N(p_1p_2\dots p_n)}a_{1p_1}a_{2p_2}\dots a_{np_n}.
a11a21⋮an1a12a22⋮an2………a1na2n⋮ann
=p1p2…pn∑(−1)N(p1p2…pn)a1p1a2p2…anpn.
行列式按列展开:
∣
a
11
a
12
…
a
1
n
a
21
a
22
…
a
2
n
⋮
⋮
⋮
a
n
1
a
n
2
…
a
n
n
∣
=
∑
p
1
p
2
…
p
n
(
−
1
)
N
(
p
1
p
2
…
p
n
)
a
p
1
1
a
p
2
2
…
a
p
n
n
.
\left |\begin{array}{cccc} a_{11} &a_{12} &\dots &a_{1n} \\ a_{21} &a_{22} &\dots &a_{2n} \\ \vdots &\vdots & &\vdots \\ a_{n1} &a_{n2} &\dots &a_{nn} \\ \end{array}\right|= \sum_{p_1p_2\dots p_n}(-1)^{N(p_1p_2\dots p_n)}a_{p_11}a_{p_22}\dots a_{p_nn}.
a11a21⋮an1a12a22⋮an2………a1na2n⋮ann
=p1p2…pn∑(−1)N(p1p2…pn)ap11ap22…apnn.
按列展开时,该项符号由行标构成的排列的奇偶性决定。
例:
计算 D = ∣ 0 1 0 … 0 0 0 2 … 0 ⋮ ⋮ ⋮ ⋮ 0 0 0 … n − 1 n 0 0 … 0 ∣ 计算D= \left |\begin{array}{cccc} 0 &1 &0 &\dots &0 \\ 0 &0 &2 &\dots &0 \\ \vdots &\vdots &\vdots & &\vdots \\ 0 &0 &0 &\dots &n-1 \\ n &0 &0 &\dots &0 \\ \end{array}\right| 计算D= 00⋮0n10⋮0002⋮00…………00⋮n−10
该行列式不同行不同列只有 1 , 2 , … , n 1,2,\dots,n 1,2,…,n 不为 0 0 0。列标排列为 23 … n 1 23\dots n1 23…n1,逆序数 N ( 23 … n 1 ) = n − 1 N(23\dots n1)=n-1 N(23…n1)=n−1,所以 D = ( − 1 ) n − 1 n ! D=(-1)^{n-1}n! D=(−1)n−1n!。
上三角行列式和下三角行列式的值等于对角线元素的积。
现有上三角行列式
∣ a 11 a 12 … a 1 n 0 a 22 … a 2 n ⋮ ⋮ ⋮ 0 0 … a n n ∣ \left |\begin{array}{cccc} a_{11} &a_{12} &\dots &a_{1n} \\ 0 &a_{22} &\dots &a_{2n} \\ \vdots &\vdots & &\vdots \\ 0 &0 &\dots &a_{nn} \\ \end{array}\right| a110⋮0a12a22⋮0………a1na2n⋮ann
在此行列式中,元素 a i j a_{ij} aij 若 i > j i>j i>j,则 a i j = 0 a_{ij}=0 aij=0。因此为了不取到 0 0 0,所取元素 a i j a_{ij} aij 应满足 i ≤ j i\leq j i≤j。当 j = 1 j=1 j=1 时, i i i 只能取 1 1 1,当 j j j 取 2 2 2 时,因为 i = 1 i=1 i=1 不可取,所以只能取 2 2 2,以此类推,只有 i = j i=j i=j 满足条件,其他代数项均为 0 0 0。下三角行列式同理可证。
转置行列式
将行列式 D D D 的行和列互换得到的行列式称为 D D D 的转置行列式,记作 D ⊤ D^\top D⊤ 或 D ′ D^{\prime} D′。
行列式和它的转置行列式相等。
记 D = det ( a i j ) D=\det(a_{ij}) D=det(aij) 的转置行列式 D ⊤ = det ( b i j ) D^{\top}=\det(b_{ij}) D⊤=det(bij)。可以知道 b i j = a j i b_{ij}=a_{ji} bij=aji。
由定义得 D ⊤ = ∑ ( − 1 ) t b p 1 1 b p 2 2 … b p n n = ∑ ( − 1 ) t a 1 p 1 a 2 p 2 … a n p n D^{\top}=\sum(-1)^tb_{p_11}b_{p_22}\dots b_{p_nn}=\sum(-1)^ta_{1p_1}a_{2p_2}\dots a_{np_n} D⊤=∑(−1)tbp11bp22…bpnn=∑(−1)ta1p1a2p2…anpn。
而 D = ∑ ( − 1 ) t a 1 p 1 a 2 p 2 … a n p n D=\sum(-1)^ta_{1p_1}a_{2p_2}\dots a_{np_n} D=∑(−1)ta1p1a2p2…anpn。
得证。
通俗的说,原行列式按行展开,转置行列式按列展开,二者得到的代数项是一样的。
对行成立的性质,对列也成立。
行列式的性质
互换行列式两行或两列,行列式变号。
因为排列中任意两个元素互换,奇偶性改变,互换行列式两行或两列,相同代数项逆序数改变,符号取反,以此类推,行列式代数项每一项都取反,因此行列式变号。
行列式两行或两列相同,行列式等于 0 0 0。
行列式两行或两列互换,行列式变号,可得 D = − D D=-D D=−D,得 D = 0 D=0 D=0。
行列式某一行(列)中所有元素的公因子 k k k 可以提到行列式符号的外面。
∣ 1 2 3 4 k 5 k 7 k 7 8 9 ∣ = k ∣ 1 2 3 4 5 7 7 8 9 ∣ \left |\begin{array}{cccc} 1 &2 &3 \\ 4k &5k &7k \\ 7 &8 &9 \\ \end{array}\right| = k \left |\begin{array}{cccc} 1 &2 &3 \\ 4 &5 &7 \\ 7 &8 &9 \\ \end{array}\right| 14k725k837k9 =k 147258379
行列式中若有两行(列)对应成比例,行列式值为 0 0 0。
行列式分解成两个行列式
∣ 1 2 3 11 21 31 7 8 9 ∣ = ∣ 1 2 3 10 20 30 7 8 9 ∣ + ∣ 1 2 3 1 1 1 7 8 9 ∣ \left |\begin{array}{cccc} 1 &2 &3 \\ 11 &21 &31 \\ 7 &8 &9 \\ \end{array}\right| = \left |\begin{array}{cccc} 1 &2 &3 \\ 10 &20 &30 \\ 7 &8 &9 \\ \end{array}\right| + \left |\begin{array}{cccc} 1 &2 &3 \\ 1 &1 &1 \\ 7 &8 &9 \\ \end{array}\right| 111722183319 = 110722083309 + 117218319
把行列式某一行(列)各元素乘以同一数 k k k 后加到另一行(列)对应的元素上,行列式值不变。
这些性质可以帮助我们简化行列式,利用上述性质可以将任何行列式化为上(下)三角行列式,从而简化计算。
余子式和代数余子式
在 n n n 阶行列式 D = det ( a i j ) D=\det(a_{ij}) D=det(aij) 中,划去 a i j a_{ij} aij 所在的第 i i i 行和第 j j j 列,剩下的 ( n − 1 ) 2 (n-1)^2 (n−1)2 个元素按照原来的位置构成的 n − 1 n-1 n−1 阶行列式,称为元素 a i j a_{ij} aij 的余子式,记作 M i j M_{ij} Mij;把 ( − 1 ) i + j M i j (-1)^{i+j}M_{ij} (−1)i+jMij 称为元素 a i j a_{ij} aij 的代数余子式,记作 A i j A_{ij} Aij。
现在有三阶行列式
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \left |\begin{array}{} a_{11} &a_{12} &a_{13} \\ a_{21} &a_{22} &a_{23} \\ a_{31} &a_{32} &a_{33} \\ \end{array}\right| a11a21a31a12a22a32a13a23a33
其元素 a 21 a_{21} a21 的余子式和代数余子式分别是
M 21 = ∣ a 12 a 13 a 32 a 33 ∣ A 21 = ( − 1 ) 2 + 1 ∣ a 12 a 13 a 32 a 33 ∣ = − M 21 M_{21} = \left |\begin{array}{cccc} a_{12} &a_{13} \\ a_{32} &a_{33} \\ \end{array}\right| \\ A_{21} = (-1)^{2+1} \left |\begin{array}{cccc} a_{12} &a_{13} \\ a_{32} &a_{33} \\ \end{array}\right| = -M_{21} M21= a12a32a13a33 A21=(−1)2+1 a12a32a13a33 =−M21
行列式按行(列)展开
n n n 阶行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和。
行列式 D = a i 1 A i 1 + a i 2 A i 2 + ⋯ + a i n A i n D=a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in} D=ai1Ai1+ai2Ai2+⋯+ainAin。
行列式 D = a 1 j A 1 j + a 2 j A 2 j + ⋯ + a n j A n j D=a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj} D=a1jA1j+a2jA2j+⋯+anjAnj。
先证明:若 n n n 阶行列式 D = det ( a i j ) D=\det(a_{ij}) D=det(aij) 的第 i i i 行中元素满足 a i j ≠ 0 a_{ij}\neq 0 aij=0, a i k = 0 a_{ik}=0 aik=0( k ≠ j k\neq j k=j),则 n n n 阶行列式 D = a i j A i j D=a_{ij}A_{ij} D=aijAij。
第一种情况:当 i = j = 1 i=j=1 i=j=1 时,即
D = ∣ a 11 0 … 0 a 21 a 22 … a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ∣ = ∑ ( − 1 ) N ( p 1 p 2 p 3 … p n ) a 1 p 1 a 2 p 2 … a n p n . D = \left |\begin{array}{cccc} a_{11} &0 &\dots &0 \\ a_{21} &a_{22} &\dots &a_{2n} \\ \vdots &\vdots & &\vdots \\ a_{n1} &a_{n2} &\dots &a_{nn} \\ \end{array}\right| = \sum(-1)^{N(p_1p_2p_3\dots p_n)}a_{1p_1}a_{2p_2}\dots a_{np_n}. D= a11a21⋮an10a22⋮an2………0a2n⋮ann =∑(−1)N(p1p2p3…pn)a1p1a2p2…anpn.当 p 1 ≠ 1 p_1\neq 1 p1=1 时, a 1 p 1 a 2 p 2 … a n p n = 0 a_{1p_1}a_{2p_2}\dots a_{np_n}=0 a1p1a2p2…anpn=0,所以可得
D = ∑ ( − 1 ) N ( 1 p 2 … p n ) a 11 a 2 p 2 … a n p n = a 11 ∑ ( − 1 ) N ( p 2 … p n ) a 2 p 2 … a n p n = a 11 A 11 D = \sum(-1)^{N(1p_2\dots p_n)}a_{11}a_{2p_2}\dots a_{np_n} \\ = a_{11}\sum(-1)^{N(p_2\dots p_n)}a_{2p_2}\dots a_{np_n} \\ = a_{11}A_{11} D=∑(−1)N(1p2…pn)a11a2p2…anpn=a11∑(−1)N(p2…pn)a2p2…anpn=a11A11第二种情况:当 i ≠ 1 i\neq 1 i=1 时,即
D = ∣ a 11 … a 1 , j − 1 a 1 j a 1 , j + 1 … a 1 n ⋮ ⋮ ⋮ ⋮ ⋮ a i − 1 , 1 … a i − 1 , j 1 a i − 1 , j a i − 1 , j … a i − 1 , n 0 … 0 a i , j 0 … 0 a i + 1 , 1 … a i + 1 , j 1 a i − 1 , j a i + 1 , j … a i + 1 , n ⋮ ⋮ ⋮ ⋮ ⋮ a n 1 … a n , j − 1 a n j a n , j + 1 … a n n ∣ D = \left |\begin{array}{cccc} a_{11} &\dots &a_{1,j-1} &a_{1j} &a_{1, j+1} &\dots &a_{1n} \\ \vdots & &\vdots &\vdots &\vdots & &\vdots \\ a_{i-1,1} &\dots &a_{i-1,j_1}&a_{i-1,j} &a_{i-1,j} &\dots &a_{i-1,n} \\ 0 &\dots &0 &a_{i,j} &0 &\dots &0 \\ a_{i+1,1} &\dots &a_{i+1,j_1}&a_{i-1,j} &a_{i+1,j} &\dots &a_{i+1,n} \\ \vdots & &\vdots &\vdots &\vdots & &\vdots \\ a_{n1} &\dots &a_{n,j-1} &a_{nj} &a_{n, j+1} &\dots &a_{nn} \\ \end{array}\right| D= a11⋮ai−1,10ai+1,1⋮an1……………a1,j−1⋮ai−1,j10ai+1,j1⋮an,j−1a1j⋮ai−1,jai,jai−1,j⋮anja1,j+1⋮ai−1,j0ai+1,j⋮an,j+1……………a1n⋮ai−1,n0ai+1,n⋮ann 将行列式第 i i i 行依次和第 i − 1 i-1 i−1 行、第 i − 2 i-2 i−2 行、 … \dots … 、第 1 1 1 行交换,共交换 i − 1 i-1 i−1 次;再同理交换列到第一列,共交换 j − 1 j-1 j−1 次,于是得
D = ( − 1 ) i + j − 2 ∣ a i j 0 … 0 0 … 0 a 1 j a 11 … a 1 , j − 1 a 1 , j + 1 … a 1 n ⋮ ⋮ ⋮ ⋮ ⋮ a i − 1 , j a i − 1 , 1 … a i − 1 , j − 1 a i − 1 , j + 1 … a i − 1 , n a i + 1 , j a i + 1 , 1 … a i + 1 , j − 1 a i + 1 , j + 1 … a i + 1 , n ⋮ ⋮ ⋮ ⋮ ⋮ a n j a n 1 … a n , j − 1 a n , j + 1 … a n n ∣ = ( − 1 ) i + j − 2 a i j M i j = a i j ( − 1 ) i + j M i j = a i j A i j D = (-1)^{i+j-2} \left |\begin{array}{cccc} a_{ij} &0 &\dots &0 &0 &\dots &0 \\ a_{1j} &a_{11} &\dots &a_{1,j-1} &a_{1,j+1} &\dots &a_{1n} \\ \vdots &\vdots & &\vdots &\vdots & &\vdots \\ a_{i-1,j} &a_{i-1,1} &\dots &a_{i-1,j-1}&a_{i-1,j+1}&\dots &a_{i-1,n} \\ a_{i+1,j} &a_{i+1,1} &\dots &a_{i+1,j-1}&a_{i+1,j+1}&\dots &a_{i+1,n} \\ \vdots &\vdots & &\vdots &\vdots & &\vdots \\ a_{nj} &a_{n1} &\dots &a_{n,j-1} &a_{n, j+1} &\dots &a_{nn} \\ \end{array}\right| \\ = (-1)^{i+j-2}a_{ij}M_{ij}=a_{ij}(-1)^{i+j}M_{ij}=a_{ij}A_{ij} D=(−1)i+j−2 aija1j⋮ai−1,jai+1,j⋮anj0a11⋮ai−1,1ai+1,1⋮an1……………0a1,j−1⋮ai−1,j−1ai+1,j−1⋮an,j−10a1,j+1⋮ai−1,j+1ai+1,j+1⋮an,j+1……………0a1n⋮ai−1,nai+1,n⋮ann =(−1)i+j−2aijMij=aij(−1)i+jMij=aijAij
得证。再证明 n n n 阶行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和:
D = ∣ a 11 a 12 … a 1 n ⋮ ⋮ ⋮ a i 1 a i 2 … a i n ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ∣ = ∣ a 11 a 12 … a 1 n ⋮ ⋮ ⋮ a i 1 + 0 + ⋯ + 0 0 + a i 2 + 0 + ⋯ + 0 … 0 + ⋯ + 0 + a i n ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ∣ = ∣ a 11 a 12 … a 1 n ⋮ ⋮ ⋮ a i 1 0 … 0 ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ∣ + ∣ a 11 a 12 … a 1 n ⋮ ⋮ ⋮ 0 a i 2 … 0 ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ∣ + ∣ a 11 a 12 … a 1 n ⋮ ⋮ ⋮ a 0 0 … a i n ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ∣ D = \left |\begin{array}{cccc} a_{11} &a_{12} &\dots &a_{1n} \\ \vdots &\vdots & &\vdots \\ a_{i1} &a_{i2} &\dots &a_{in} \\ \vdots &\vdots & &\vdots \\ a_{n1} &a_{n2} &\dots &a_{nn} \\ \end{array}\right| = \left |\begin{array}{cccc} a_{11} &a_{12} &\dots &a_{1n} \\ \vdots &\vdots & &\vdots \\ a_{i1}+0+\dots+0 &0+a_{i2}+0+\dots+0 &\dots &0+\dots+0+a_{in} \\ \vdots &\vdots & &\vdots \\ a_{n1} &a_{n2} &\dots &a_{nn} \\ \end{array}\right| \\ = \left |\begin{array}{cccc} a_{11} &a_{12} &\dots &a_{1n} \\ \vdots &\vdots & &\vdots \\ a_{i1} &0 &\dots &0 \\ \vdots &\vdots & &\vdots \\ a_{n1} &a_{n2} &\dots &a_{nn} \\ \end{array}\right| + \left |\begin{array}{cccc} a_{11} &a_{12} &\dots &a_{1n} \\ \vdots &\vdots & &\vdots \\ 0 &a_{i2} &\dots &0 \\ \vdots &\vdots & &\vdots \\ a_{n1} &a_{n2} &\dots &a_{nn} \\ \end{array}\right| + \left |\begin{array}{cccc} a_{11} &a_{12} &\dots &a_{1n} \\ \vdots &\vdots & &\vdots \\ a0 &0 &\dots &a_{in} \\ \vdots &\vdots & &\vdots \\ a_{n1} &a_{n2} &\dots &a_{nn} \\ \end{array}\right| D= a11⋮ai1⋮an1a12⋮ai2⋮an2………a1n⋮ain⋮ann = a11⋮ai1+0+⋯+0⋮an1a12⋮0+ai2+0+⋯+0⋮an2………a1n⋮0+⋯+0+ain⋮ann = a11⋮ai1⋮an1a12⋮0⋮an2………a1n⋮0⋮ann + a11⋮0⋮an1a12⋮ai2⋮an2………a1n⋮0⋮ann + a11⋮a0⋮an1a12⋮0⋮an2………a1n⋮ain⋮ann
根据刚刚证明的结论,得证 n n n 阶行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和。
异乘变零
某行(列)元素与另一行(列)元素的代数余子式乘积之和等于 0 0 0。
现有一个行列式
∣ 1 1 2 3 0 0 8 9 2 5 5 4 9 9 9 10 ∣ \left |\begin{array}{cccc} 1 &1 &2 &3 \\ 0 &0 &8 &9 \\ 2 &5 &5 &4 \\ 9 &9 &9 &10 \\ \end{array}\right| 10291059285939410
用第 4 4 4 行元素与第 1 1 1 行元素的代数余子式相乘,得
9 × A 11 + 9 × A 12 + 9 × A 13 + 10 × A 14 9\times A_{11}+9\times A_{12} + 9\times A_{13}+ 10\times A_{14} 9×A11+9×A12+9×A13+10×A14
这个式子等价于下面这个行列式的值
∣ 9 9 9 10 0 0 8 9 2 5 5 4 9 9 9 10 ∣ \left |\begin{array}{cccc} 9 &9 &9 &10 \\ 0 &0 &8 &9 \\ 2 &5 &5 &4 \\ 9 &9 &9 &10 \\ \end{array}\right| 902990599859109410
由于行列式两行相同,所以行列式值为 0 0 0。
拉普拉斯定理
k k k 阶子式和其余子式
在 n n n 阶行列式中任取 k k k 行 k k k 列,位于这些行列交叉处的 k 2 k^2 k2 个元素按原来的相对位置构成的一个 k k k 阶行列式称为这个 n n n 阶行列式的一个 k k k 阶子式;余下的元素就是余子式。
现有一个 4 4 4 阶行列式
∣ 1 1 2 3 0 0 8 9 2 5 5 4 9 9 9 10 ∣ \left |\begin{array}{cccc} 1 &1 &2 &3 \\ 0 &0 &8 &9 \\ 2 &5 &5 &4 \\ 9 &9 &9 &10 \\ \end{array}\right| 10291059285939410
取其第一、二行和第一、二列,得到其 2 2 2 阶子式 N N N 和余子式 M M M 为
N = ∣ 1 1 0 0 ∣ M = ∣ 5 4 9 10 ∣ N= \left |\begin{array}{cccc} 1 &1 \\ 0 &0 \\ \end{array}\right| \\ M= \left |\begin{array}{cccc} 5 &4 \\ 9 &10 \\ \end{array}\right| N= 1010 M= 59410
相应的,代数余子式为
A = ( − 1 ) ( 1 + 2 ) + ( 1 + 2 ) M A= (-1)^{(1+2)+(1+2)}M A=(−1)(1+2)+(1+2)M
拉普拉斯定理
在
n
n
n 阶行列式中任意选定
k
k
k 行,由这
k
k
k 行元素构成的一切
k
k
k 阶子式
N
1
,
N
2
,
…
,
N
m
N_1,N_2,\dots,N_m
N1,N2,…,Nm 与它们对应的代数余子式
A
1
,
A
2
,
…
,
A
m
A_1,A_2,\dots,A_m
A1,A2,…,Am 的乘积之和等于行列式的值。
D
=
N
1
A
1
+
N
2
A
2
+
⋯
+
N
m
A
m
D=N_1A_1+N_2A_2+\dots+N_mA_m
D=N1A1+N2A2+⋯+NmAm
现有一个 5 5 5 阶行列式
∣ 1 2 0 0 0 3 4 0 0 0 1 2 3 4 5 6 7 8 9 10 1 1 1 1 1 ∣ \left |\begin{array}{cccc} 1 &2 &0 &0 &0 \\ 3 &4 &0 &0 &0 \\ 1 &2 &3 &4 &5 \\ 6 &7 &8 &9 &10 \\ 1 &1 &1 &1 &1 \\ \end{array}\right| 13161242710038100491005101
该行列式第 1 1 1 行和第 2 2 2 行只有 1 1 1 列和第 2 2 2 列不为 0 0 0,则该行列式值为
D = ∣ 1 3 2 4 ∣ × ( − 1 ) ( 1 + 2 ) + ( 1 + 2 ) ∣ 3 4 5 8 9 10 1 1 1 ∣ D= \left |\begin{array}{cccc} 1 &3 \\ 2 &4 \\ \end{array}\right| \times (-1)^{(1+2)+(1+2)} \left |\begin{array}{cccc} 3 &4 &5\\ 8 &9 &10\\ 1 &1 &1\\ \end{array}\right| D= 1234 ×(−1)(1+2)+(1+2) 3814915101
行列式相乘
等同矩阵乘法
∣ 1 1 1 2 0 0 0 0 3 ∣ × ∣ 1 2 3 1 3 2 3 2 1 ∣ = ∣ 5 7 6 2 4 6 9 6 3 ∣ \left |\begin{array}{cccc} 1 &1 &1\\ 2 &0 &0\\ 0 &0 &3\\ \end{array}\right| \times \left |\begin{array}{cccc} 1 &2 &3\\ 1 &3 &2\\ 3 &2 &1\\ \end{array}\right| = \left |\begin{array}{cccc} 5 &7 &6\\ 2 &4 &6\\ 9 &6 &3\\ \end{array}\right| 120100103 × 113232321 = 529746663
行列式的计算
现有 4 4 4 阶行列式
∣ 2 1 7 − 1 − 1 2 4 3 2 1 0 − 1 3 2 2 1 ∣ \left |\begin{array}{cccc} 2 &1 &7 &-1 \\ -1 &2 &4 &3 \\ 2 &1 &0 &-1 \\ 3 &2 &2 &1 \\ \end{array}\right| 2−12312127402−13−11
我们的目标是把它化为三角行列式以便于快速求值。
三叉行列式的计算
现在有一个 n n n 阶行列式
∣ 1 + a 1 1 1 … 1 1 1 + a 2 1 … 1 … … … … … 1 1 1 … 1 + a n ∣ \left |\begin{array}{cccc} 1+a_1 &1 &1 &\dots &1 \\ 1 &1+a_2 &1 &\dots &1 \\ \dots &\dots &\dots &\dots &\dots \\ 1 &1 &1 &\dots &1+a_n \\ \end{array}\right| 1+a11…111+a2…111…1…………11…1+an
我们使用加边法,添加一行和一列,得到
∣ 1 1 1 1 … 1 0 1 + a 1 1 1 … 1 0 1 1 + a 2 1 … 1 ⋮ … … … … … 0 1 1 1 … 1 + a n ∣ \left |\begin{array}{cccc} 1 &1 &1 &1 &\dots &1 \\ 0 &1+a_1 &1 &1 &\dots &1 \\ 0 &1 &1+a_2 &1 &\dots &1 \\ \vdots &\dots &\dots &\dots &\dots &\dots \\ 0 &1 &1 &1 &\dots &1+a_n \\ \end{array}\right| 100⋮011+a11…1111+a2…1111…1……………111…1+an
可以证明,这并不改变行列式的值。我们通过行列式变换可以进一步得到
∣ 1 1 1 … 1 − 1 a 1 − 1 a 2 ⋮ ⋱ − 1 a n ∣ \left |\begin{array}{cccc} 1 &1 &1 &\dots &1 \\ -1 &a_1 \\ -1 & &a_2 \\ \vdots & & &\ddots \\ -1 & & & &a_n \\ \end{array}\right| 1−1−1⋮−11a11a2…⋱1an
上面这个行列式则是一个标准的三叉行列式,空白的部分都是 0 0 0。我们通过行列式变换可以得到
∣ 1 + 1 a 1 + 1 a 2 + ⋯ + 1 a n 1 1 … 1 0 a 1 0 a 2 ⋮ ⋱ 0 a n ∣ \left |\begin{array}{cccc} 1+\frac1{a_1}+\frac1{a_2}+\dots+\frac1{a_n} &1 &1 &\dots &1 \\ 0 &a_1 \\ 0 & &a_2 \\ \vdots & & &\ddots \\ 0 & & & &a_n \\ \end{array}\right| 1+a11+a21+⋯+an100⋮01a11a2…⋱1an
这样我们就得到了一个上三角行列式,其值为
( 1 + 1 a 1 + 1 a 2 + ⋯ + 1 a n ) a 1 a 2 … a n (1+\frac1{a_1}+\frac1{a_2}+\dots+\frac1{a_n})a_1a_2\dots a_n (1+a11+a21+⋯+an1)a1a2…an
范德蒙德行列式
D n = ∣ 1 1 1 … 1 x 1 x 2 x 3 … x n x 1 2 x 2 2 x 3 2 … x n 2 ⋮ ⋮ ⋮ ⋮ x 1 n − 1 x 2 n − 1 x 3 n − 1 … x n n − 1 ∣ = ∏ 1 ≤ i < j ≤ n ( x j − x i ) D_n= \left |\begin{array}{cccc} 1 &1 &1 &\dots &1 \\ x_1 &x_2 &x_3 &\dots &x_n \\ x_1^{2} &x_2^2 &x_3^2 &\dots &x_n^2 \\ \vdots &\vdots &\vdots & &\vdots \\ x_1^{n-1} &x_2^{n-1} &x_3^{n-1} &\dots &x_n^{n-1} \\ \end{array}\right|= \prod_{1\leq i< j\leq n }(x_j-x_i) Dn= 1x1x12⋮x1n−11x2x22⋮x2n−11x3x32⋮x3n−1…………1xnxn2⋮xnn−1 =1≤i<j≤n∏(xj−xi)
使用数学归纳法证明
当 n = 2 n=2 n=2 时, ∣ 1 1 x 1 x 2 ∣ = x 2 − x 1 \left |\begin{array}{cccc}1 &1 \\x_1 &x_2 \\ \end{array}\right|=x_2-x_1 1x11x2 =x2−x1,结论成立。
假设对 n − 1 n-1 n−1 阶行列式也成立,即 D n − 1 = ∏ 1 ≤ i < j ≤ n − 1 ( x j − x i ) D_{n-1}=\prod_{1\leq i< j\leq n-1 }(x_j-x_i) Dn−1=∏1≤i<j≤n−1(xj−xi)
对于 n n n 阶行列式,我们有
D n = ∣ 1 1 1 … 1 x 1 x 2 x 3 … x n x 1 2 x 2 2 x 3 2 … x n 2 ⋮ ⋮ ⋮ ⋮ x 1 n − 1 x 2 n − 1 x 3 n − 1 … x n n − 1 ∣ D_n= \left |\begin{array}{cccc} 1 &1 &1 &\dots &1 \\ x_1 &x_2 &x_3 &\dots &x_n \\ x_1^{2} &x_2^2 &x_3^2 &\dots &x_n^2 \\ \vdots &\vdots &\vdots & &\vdots \\ x_1^{n-1} &x_2^{n-1} &x_3^{n-1} &\dots &x_n^{n-1} \\ \end{array}\right| Dn= 1x1x12⋮x1n−11x2x22⋮x2n−11x3x32⋮x3n−1…………1xnxn2⋮xnn−1 通过行列式变换,我们得到
∣ 1 1 … 1 x 1 − x n x 2 − x n … 0 x 1 2 − x 1 x n x 2 2 − x 2 x n … 0 ⋮ ⋮ ⋮ x 1 n − 1 − x 1 n − 2 x n x 2 n − 1 − x 2 n − 2 x n … 0 ∣ \left |\begin{array}{cccc} 1 &1 &\dots &1 \\ x_1-x_n &x_2-x_n &\dots &0 \\ x_1^2-x_1x_n &x_2^2-x_2x_n &\dots &0 \\ \vdots &\vdots & &\vdots \\ x_1^{n-1}-x_1^{n-2}x_n &x_2^{n-1}-x_2^{n-2}x_n &\dots &0 \\ \end{array}\right| 1x1−xnx12−x1xn⋮x1n−1−x1n−2xn1x2−xnx22−x2xn⋮x2n−1−x2n−2xn…………100⋮0 这个行列式等价于 ( − 1 ) n + 1 M n 1 (-1)^{n+1}M_{n1} (−1)n+1Mn1
( − 1 ) n + 1 ∣ x 1 − x n x 2 − x n … x n − 1 − x n x 1 2 − x 1 x n x 2 2 − x 2 x n … x n − 1 2 − x n − 1 x n ⋮ ⋮ ⋮ x 1 n − 1 − x 1 n − 2 x n x 2 n − 1 − x 2 n − 2 x n … x n − 1 n − 1 − x n − 1 n − 2 x n ∣ (-1)^{n+1} \left |\begin{array}{cccc} x_1-x_n &x_2-x_n &\dots &x_{n-1}-x_n \\ x_1^2-x_1x_n &x_2^2-x_2x_n &\dots &x_{n-1}^2-x_{n-1}x_n \\ \vdots &\vdots & &\vdots \\ x_1^{n-1}-x_1^{n-2}x_n &x_2^{n-1}-x_2^{n-2}x_n &\dots &x_{n-1}^{n-1}-x_{n-1}^{n-2}x_n \\ \end{array}\right| (−1)n+1 x1−xnx12−x1xn⋮x1n−1−x1n−2xnx2−xnx22−x2xn⋮x2n−1−x2n−2xn………xn−1−xnxn−12−xn−1xn⋮xn−1n−1−xn−1n−2xn
提公因式得
( − 1 ) n + 1 ∣ x 1 − x n x 2 − x n … x n − 1 − x n x 1 ( x 1 − x n ) x 2 ( x 2 − x n ) … x n − 1 ( x n − 1 − x n ) ⋮ ⋮ ⋮ x 1 n − 2 ( x 1 − x n ) x 2 n − 2 ( x 2 − x n ) … x n − 1 n − 2 ( x n − 1 − x n ) ∣ (-1)^{n+1} \left |\begin{array}{cccc} x_1-x_n &x_2-x_n &\dots &x_{n-1}-x_n \\ x_1(x_1-x_n) &x_2(x_2-x_n) &\dots &x_{n-1}(x_{n-1}-x_n) \\ \vdots &\vdots & &\vdots \\ x_1^{n-2}(x_1-x_n) &x_2^{n-2}(x_2-x_n) &\dots &x_{n-1}^{n-2}(x_{n-1}-x_n) \\ \end{array}\right| (−1)n+1 x1−xnx1(x1−xn)⋮x1n−2(x1−xn)x2−xnx2(x2−xn)⋮x2n−2(x2−xn)………xn−1−xnxn−1(xn−1−xn)⋮xn−1n−2(xn−1−xn) 根据行列式的性质,行列式变换得到
( − 1 ) n + 1 ( x 1 − x n ) ( x 2 − x n ) … ( x n − 1 − x n ) ∣ 1 1 … 1 x 1 x 2 … x n − 1 ⋮ ⋮ ⋮ x 1 n − 2 x 2 n − 2 … x n − 1 n − 2 ∣ = ( − 1 ) n + 1 ( x 1 − x n ) ( x 2 − x n ) … ( x n − 1 − x n ) ∏ 1 ≤ i < j ≤ n − 1 ( x j − x i ) = ( x n − x 1 ) ( x n − x 2 ) … ( x n − x n − 1 ) ∏ 1 ≤ i < j ≤ n − 1 ( x j − x i ) = ( x n − x 1 ) ( x n − x 2 ) … ( x n − x n − 1 ) D n − 1 (-1)^{n+1} (x_1-x_n)(x_2-x_n)\dots(x_{n-1}-x_n) \left |\begin{array}{cccc} 1 &1 &\dots &1 \\ x_1 &x_2 &\dots &x_{n-1} \\ \vdots &\vdots & &\vdots \\ x_1^{n-2} &x_2^{n-2} &\dots &x_{n-1}^{n-2}\\ \end{array}\right| \\= (-1)^{n+1} (x_1-x_n)(x_2-x_n)\dots(x_{n-1}-x_n)\prod_{1\leq i<j\leq n-1}(x_j-x_i) \\= (x_n-x_1)(x_n-x_2)\dots(x_n-x_{n-1})\prod_{1\leq i<j\leq n-1}(x_j-x_i) \\ =(x_n-x_1)(x_n-x_2)\dots(x_n-x_{n-1})D_{n-1} (−1)n+1(x1−xn)(x2−xn)…(xn−1−xn) 1x1⋮x1n−21x2⋮x2n−2………1xn−1⋮xn−1n−2 =(−1)n+1(x1−xn)(x2−xn)…(xn−1−xn)1≤i<j≤n−1∏(xj−xi)=(xn−x1)(xn−x2)…(xn−xn−1)1≤i<j≤n−1∏(xj−xi)=(xn−x1)(xn−x2)…(xn−xn−1)Dn−1所以我们得到
D n = ( x n − x 1 ) ( x n − x 2 ) … ( x n − x n − 1 ) D n − 1 D_n=(x_n-x_1)(x_n-x_2)\dots(x_n-x_{n-1})D_{n-1} Dn=(xn−x1)(xn−x2)…(xn−xn−1)Dn−1
所以
D = ∏ 1 ≤ i < j ≤ n ( x j − x i ) D=\prod_{1\leq i< j\leq n }(x_j-x_i) D=1≤i<j≤n∏(xj−xi)
Cramer 法则
我们现在只考虑方程数和未知数个数相同的情况
现在我们有
3
3
3 个方程
{
x
1
+
x
2
+
x
3
=
1
x
1
−
x
2
+
5
x
3
=
6
−
x
1
+
x
2
+
6
x
3
=
9
\begin{cases} x_1 +x_2 +x_3 =1 \\ x_1 -x_2 +5x_3 =6 \\ -x_1+x_2 +6x_3 =9 \end{cases}
⎩
⎨
⎧x1+x2+x3=1x1−x2+5x3=6−x1+x2+6x3=9
我们可以得到系数行列式
D
D
D
D
=
∣
1
1
1
1
−
1
5
−
1
1
6
∣
D= \left |\begin{array}{cccc} 1 &1 &1\\ 1 &-1 &5\\ -1 &1 &6\\ \end{array}\right|
D=
11−11−11156
我们把
D
D
D 中第
j
j
j 列各元素替换成方程组右端常数项对应的元素后得到的行列式称为
D
j
D_j
Dj,我们有
D
1
=
∣
1
1
1
6
−
1
5
9
1
6
∣
D
2
=
∣
1
1
1
1
6
5
−
1
9
6
∣
D
3
=
∣
1
1
1
1
−
1
6
−
1
1
9
∣
D_1=\left |\begin{array}{cccc} 1 &1 &1\\ 6 &-1 &5\\ 9 &1 &6\\ \end{array}\right| \\ D_2=\left |\begin{array}{cccc} 1 &1 &1\\ 1 &6 &5\\ -1 &9 &6\\ \end{array}\right| \\ D_3=\left |\begin{array}{cccc} 1 &1 &1\\ 1 &-1 &6\\ -1 &1 &9\\ \end{array}\right|
D1=
1691−11156
D2=
11−1169156
D3=
11−11−11169
Cramer 法则
如果线性方程组的系数行列式
D
≠
0
D\neq 0
D=0,那么方程组有唯一解,分别为:
x
1
=
D
1
D
,
x
2
=
D
2
D
,
x
3
=
D
3
D
x_1=\frac{D_1}D,x_2=\frac{D_2}D,x_3=\frac{D_3}D
x1=DD1,x2=DD2,x3=DD3
齐次线性方程组
方程组常数项全为 0 0 0 的方程组称为齐次线性方程组,否则便是非齐次线性方程组。
如果齐次线性方程组有非零解,则系数行列式 D = 0 D=0 D=0。