集成聚类经典之作

[16]Robust Ensemble Clustering Using Probability Trajectories(PTA、PTGP)

首次提出微簇(microclusters)的概念,以及基于微簇的CA矩阵MCA来衡量微簇之间的共现性。

1.MCA(microcluster based co-asscoiation)矩阵记录了在m个基结果中,每两个微簇出现在同一个簇中的频率。即微簇的共现性。

2.Elite Neighbor Selection保留少部分高置信度的连接 得到稀疏图W,然后执行随机游走得到稠密图,其中转移概率矩阵Q考虑了微簇的大小。基于此可以得到T步的随机游走的概率轨迹Rprobability trajectory similarity(PTS)是通过计算两个微簇间的概率轨迹的cos相似性得到,矩阵衡量了微簇间的相似性,可以被当做增强的CA矩阵。聚类结果可由微簇映射回样本得到。


通过概率轨迹(probability trajectory)来利用多步信息来描述随机游走过程

【17】Spectral Ensemble Clustering via Weighted K-Means(SEC)

【18】LWEA(Local Weighted Ensemble Clustering)

利用聚类的不确定性和局部多样性来精炼CA矩阵

通过熵 来衡量聚类的不确定性

通过其来计算ECI(Ensemble-driven Cluster index)作为CA矩阵的融合的权重

增强的CA矩阵:

【19】Ensemble clustering based on dense representation(DREC)

通过提取微簇得到C,然后计算其相似性矩阵。

【21】Enhanced Ensemble Clustering via Fast Propagation of Cluster-Wise Similarities(ECPCS)

使用Jaccard系数来衡量簇间相似性,并加入高阶信息 得到簇级相似性图Z 用来增强CA矩阵

如果xi和xj所属簇不同的话,bij为两个簇的相似性,由此ECA可以捕捉到它们的不直接关系。

之后可以使用层次聚类(Hierarchical Clusteirng)在目标级划分 或元聚类(meta clusteirng)在簇级划分。

A.层次聚类通过不断将相似性大的区域进行融合,形成一颗树结构(HC tree)

B.元聚类

【21】Tri-level Robust Clustering Ensemble with Multiple Graph Learning(TRCE)

整合了基聚类级、图级以及实例级的信息

[22]Towardes Multidiversified Ensemble Clustering of High-Dimensional Data:From Subspace to Metrics and Beyond(MDEC)

本文使用随机核函数、随机子空间来增强多样性。之后通过SC获得基聚类,利用簇级相似性得到Local Weighted CA矩阵。最后使用了三种共识函数HC、SC和BG获得最终结果。

1.随机选择超参u和k

2.随机进行子空间特征采样,即从原始数据随机采样特定的特征作为其子空间达到低维。

3.通过M次随机的核函数,随机子空间,获得M个metric-subspace pairs

相似性矩阵的获得 就是先将xi 和xj投影到低维,然后计算它们的核相似性。有了相似性矩阵就可以构造图,利用谱聚类划分得到基结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值