[16]Robust Ensemble Clustering Using Probability Trajectories(PTA、PTGP)
首次提出微簇(microclusters)的概念,以及基于微簇的CA矩阵MCA来衡量微簇之间的共现性。
1.MCA(microcluster based co-asscoiation)矩阵记录了在m个基结果中,每两个微簇出现在同一个簇中的频率。即微簇的共现性。
2.Elite Neighbor Selection保留少部分高置信度的连接 得到稀疏图W,然后执行随机游走得到稠密图,其中转移概率矩阵Q考虑了微簇的大小。基于此可以得到T步的随机游走的概率轨迹R,probability trajectory similarity(PTS)是通过计算两个微簇间的概率轨迹的cos相似性得到,矩阵衡量了微簇间的相似性,可以被当做增强的CA矩阵。聚类结果可由微簇映射回样本得到。
通过概率轨迹(probability trajectory)来利用多步信息来描述随机游走过程
【17】Spectral Ensemble Clustering via Weighted K-Means(SEC)
【18】LWEA(Local Weighted Ensemble Clustering)
利用聚类的不确定性和局部多样性来精炼CA矩阵
通过熵 来衡量聚类的不确定性
通过其来计算ECI(Ensemble-driven Cluster index)作为CA矩阵的融合的权重
增强的CA矩阵:
【19】Ensemble clustering based on dense representation(DREC)
通过提取微簇得到C,然后计算其相似性矩阵。
【21】Enhanced Ensemble Clustering via Fast Propagation of Cluster-Wise Similarities(ECPCS)
使用Jaccard系数来衡量簇间相似性,并加入高阶信息 得到簇级相似性图Z 用来增强CA矩阵
如果xi和xj所属簇不同的话,bij为两个簇的相似性,由此ECA可以捕捉到它们的不直接关系。
之后可以使用层次聚类(Hierarchical Clusteirng)在目标级划分 或元聚类(meta clusteirng)在簇级划分。
A.层次聚类通过不断将相似性大的区域进行融合,形成一颗树结构(HC tree)
B.元聚类
【21】Tri-level Robust Clustering Ensemble with Multiple Graph Learning(TRCE)
整合了基聚类级、图级以及实例级的信息
[22]Towardes Multidiversified Ensemble Clustering of High-Dimensional Data:From Subspace to Metrics and Beyond(MDEC)
本文使用随机核函数、随机子空间来增强多样性。之后通过SC获得基聚类,利用簇级相似性得到Local Weighted CA矩阵。最后使用了三种共识函数HC、SC和BG获得最终结果。
1.随机选择超参u和k
2.随机进行子空间特征采样,即从原始数据随机采样特定的特征作为其子空间达到低维。
3.通过M次随机的核函数,随机子空间,获得M个metric-subspace pairs
相似性矩阵的获得 就是先将xi 和xj投影到低维,然后计算它们的核相似性。有了相似性矩阵就可以构造图,利用谱聚类划分得到基结果。