最近在学习分治算法,故找了一些题尝试用分治的方法去解决,以此来巩固。
Leetcode 169 多数
题目描述:
给定一个大小为 n 的数组,找到其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。
你可以假设数组是非空的,并且给定的数组总是存在多数元素。
解题思路:
将数组分为左右两个部分,分别求出两个部分的多数元素,在递归将左右区间合并时,如果它们的多数相同,那么合并完的这个区间的多数和它们相同;如果不同,那么就需要比较它们两者的出现的频率,多的那个就是这个区间的多数。
代码展示:
class Solution {
int majority_element_rec(vector<int>& nums, int l, int r) {
if (l == r)
return nums[l];
int mid = (l+r) /2;
int leftJh = majority_element_rec(nums , l , mid );
int rightJh = majority_element_rec(nums , mid + 1 , r);
if(total_count(nums , leftJh , l , r) > (r - l + 1)/2)
return leftJh;
if(total_count(nums , rightJh , l , r) > (r - l + 1)/2)
return rightJh;
return -1;
}
int total_count(vector<int>& nums, int target, int l, int r) {
int count = 0;
for (int i = l; i <= r; i++)
if (nums[i] == target)
count++;
return count;
}
public:
int majorityElement(vector<int>& nums) {
return majority_element_rec(nums , 0 , nums.size()-1);
}
};