推迟势的简单推导,希尔伯特空间引入以及分离变量法

推迟势

将非齐次的强迫振动,变成了速度函数所满足的齐次波动方程

\small \mu_{tt}-a^2 \nabla^2 \mu =f(M,t)

\small \mu|_{t=0}=0

\small \mu_t|_{t=0}=0

用冲量法原理做一个积分变换\small \mu(M,t)=\int_{0}^{t}v(x,t,\tau)d\tau

方程变为

\small v_{tt}-a^2 \nabla^2 \mu =0

\small v|_{t=0}=0

\small v_t|_{t=\tau}=f(M,\tau)

我们令\small T=t-\tau,这样子就变回了\small T=0的初值问题

\small v(M,t,\tau)=\frac{1}{4 \pi a}\iint_{S_{a(t-\tau)}}^{M}\frac{f({M}',\tau)}{a(t-\tau)}d{S}'

用冲量法原理和泊松公式一起代入解方程

我们得到

\small \mu(M,t)=推迟势(retarded potential) 推迟势

推迟势表示此时球心在T时刻的解,在距离为R的地方求得,但是距离球心


我们解决了无界区间自由/强迫振动,我们下面要解决有界空间的自由/强迫振动,波传播到边界,受到边界影响,会产生反射波,现在有界空间边界的影响介入了,现在处理的方法变成了分离变量法。分离变量法,是我们本学期学习数学物理方程的重点。

我们先用分离变量法处理

有界弦的自由振动——分离变量法

\small \mu_{tt}-a^2 \mu_{xx}=0 齐次PDE

\small \mu|_{x=0}=0

\small \mu|_{x=l}=0

\small \mu|_{t=0}=\phi(x)

\small \mu_t|_{t=0}=\psi(x)

这个条件叫做节点条件,这个方程表示自由振动

节点条件也称为驻波条件

分离变量法的根本是构造一个本质值的问题,就算不是齐次方程,我们也要人为构造,齐次方程的重要性质就是满足叠加原理\small \mu(x,t)=\sum_{n} \mu_{n}(x,t)

这就是线性系统满足叠加原理的意义

分离变量法的思想:并不是最后的解一定可以分解为x乘上t的函数,而是其中任何一个独立的解,称为一个模(mode),可以分离变量,再配上适当的系数,可以满足初始条件,叠加最后的解不一定满足可乘

第N个模,\small \mu_n(x,t)=\phi_n(x)\phi_n(t)分离变量法是说构造一个本质值问题以后,这个解可以在本征值空间展开成若干个模的叠加,其中每个模都可以分离变量

我们令\small \mu_n(x,t)=X_n(x)T_n(t)

我们将它代入齐次方程

方程变为

\small \frac{​{X}''(x)}{X(x)}=\frac{​{T}''(t)}{a^2 T(t)}=\mu,只有等于常数,左右两边才可能相等

我们得到\small {X}''(x)-\mu X(x)=0,X(0)=0,X(l)=0,我们再加上边界条件,在左端在任何时刻等于0,所以我们只能让\small X(0)=0,X(l)=0,所以关于X的振动方程,左右都是节点,我们称之为本征值问题,方程本身,配上这样的边界条件,用本征方程加上边界条件,构成本征值问题

我们论讨这个方程的解\small {X}''(x)-\mu X(x)=0,X(0)=0,X(l)=0

1. \small \mu<0

它的解\small =A_{n}cos k_n x+ B_{n}sin k_n x,其中\small \mu_n=k_n^2=(\frac{n \pi}{l})^2(n=0,1,2,3......)

其中\small A_n=0

所以\small X_n(x)=B_nsin(\frac{n\pi}{l}x),称为本征函数

\small \mu_n=- k_n^2=-(\frac{n \pi}{L})^2,n=1,2,3......,n=0是平庸解,第n个值称为本征值(eigenvalue)

将这个值代入t的方程,我们得到\small {T}_n''(t)+(\frac{n \pi a}{L})^2 T_n(t)=0也是一个振动方程

它的解

\small T_n(t)=a_ncos(\frac{n \pi a}{L}t)+b_nsin(\frac{n \pi a}{L}t),n \in z

希尔伯特空间

构成了一个本征函数集,长成了一个无穷维希尔伯特空间,是为函数的展开(广义傅里叶展开奠定数学基础),在这个函数空间里,任何一个函数可以以他们为基矢,作广义的傅里叶展开

\small \vec r=x \vec i+ y \vec j +z \vec k,希尔伯特构造了一种抽象的代数空间

这些基矢函数可以通过构造本征值问题求得,每一个本征值对应一个本征函数,这些本征函数之间满足正交归一化,所以可以形成基矢函数

\small \{X_n(x),\mu,\mu_n =-(\frac{n \pi}{L})^2,n=1,2,3...... \}

构成一个无穷维的线性正交的希尔伯特函数空间

我们所处的三维空间,满足

\small \vec i \cdot \vec i =1

\small \vec j \cdot \vec j =1

\small \vec k \cdot \vec k =1

我们发现 

\small \int_{0}^{l} |X_n(x)|^2dx=1

\small \int_{0}^{l} X_n(x) X_M^*dx=0(n \neq m)

\int_{0}^{L}X_n(x)\overline X_{m}(x)dx=\delta_{nm} kronecker 记号

\delta_{nm}=1(n=m),=0(n \neq m) 就代表了上述两个等式

所以每一维上有基矢函数,我们构造了无穷维的希尔伯特空间,在这个函数空间任何一个函数都可以展开成无数个基矢函数的线性组合(称为广义的傅里叶级数展开

最后的解一定可以展开成这无穷多个本征函数的线性叠加

\mu(x,t)=\sum_{n=1}^{\infty}T_n(t)X_n(x)

正交归一化的关系,无数多个本征函数之间满足正交归一化的关系X_n(x)=B_nsin(\frac{n\pi}{l}x)

我们可以求出系数,B_n=\sqrt{\frac{2}{L}},称为归一化常数

现在我们剩下的任务是求出系数,来确定最后的解,根据初始条件确定{a_n}' , {b_n}'

 我们就要利用初始条件来确定展开系数,这是余弦项和正弦项的叠加


其他两种情况无解


我们要求在边界处

\mu(x,0)=\phi(x)=\sum_{n=1}^{\infty}{A_n}' sin \frac{n \pi}{L} x

\mu_t(x,0)=\psi(x)=\frac{n \pi a}{L} {B_n}' sin \frac{n \pi}{L} x

我们必须构造一个周期函数而且是奇函数

我们将\phi(x)周期性的解析开拓

\phi(x)=\phi(x) ,0<=x<=L

\phi(x)=-\phi(-x) ,-L<=x<=0

我们认为定义了[-L,L]的奇函数,我们再以2L为周期,将这样一个奇函数,沿着X轴作周期性的开拓,构造以2L为周期的奇函数

\psi(x)一样做周期性的解析开拓

\psi(x)=\psi(x) ,0<=x<=L

\psi(x)=-\psi(-x) ,-L<=x<=0

无限的copy下去,人为制造一个周期性函数,展开为一个傅里叶级数,间断点满足傅里叶展开定理,所以这个展开是存在的

参照傅里级数的系数展开攻势,展开系数

F(x)=\sum_{n=1}^{\infty} b_nsin(\frac{n \pi}{L} x),b_n=\frac{2}{l}\int_0^{L} F(x)sin\frac{n \pi x}{L} dx

如果两端的边界条件不是齐次的狄里克莱条件,而是诺伊曼边界条件,正弦就要变成余弦

此时我们知道

{A_n}' =\frac{2}{l}\int_0^{L} \phi(x)sin\frac{n \pi x}{L} dx

{B_n}' =\frac{2}{n \pi a}\int_0^{L} \psi(x)sin\frac{n \pi x}{L} dx

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
希尔伯特空间是一个完备的内积空间,其中的内积满足线性、对称和正定性质。它通常用符号 $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ 表示,其中 $\mathcal{H}$ 是向量空间,$\langle \cdot, \cdot \rangle$ 是定义在 $\mathcal{H}$ 上的内积。内积满足以下性质: 1. 线性性:对于任意 $x, y, z \in \mathcal{H}$ 和 $a, b \in \mathbb{C}$,有 $\langle ax+by, z\rangle = a\langle x, z\rangle + b\langle y, z\rangle$。 2. 对称性:对于任意 $x, y \in \mathcal{H}$,有 $\langle x, y\rangle = \overline{\langle y, x\rangle}$,其中 $\overline{\cdot}$ 表示复共轭。 3. 正定性:对于任意 $x \in \mathcal{H}$,有 $\langle x, x\rangle \geq 0$,且当且仅当 $x = \mathbf{0}$ 时,有 $\langle x, x\rangle = 0$。 希尔伯特空间的完备性意味着它是一个度量空间,即每个向量都可以被测量,并且两个向量之间的距离可以被定义。这种距离称为范数,可以通过内积来定义: $$\|x\| = \sqrt{\langle x, x\rangle}$$ 希尔伯特空间上的范数满足以下性质: 1. 正定性:对于任意 $x \in \mathcal{H}$,有 $\|x\| \geq 0$,且当且仅当 $x = \mathbf{0}$ 时,有 $\|x\| = 0$。 2. 齐次性:对于任意 $x \in \mathcal{H}$ 和 $a \in \mathbb{C}$,有 $\|ax\| = |a|\|x\|$。 3. 三角不等式:对于任意 $x, y \in \mathcal{H}$,有 $\|x+y\| \leq \|x\|+\|y\|$。 希尔伯特空间的数学解释为我们提供了一种强大的工具来研究各种数学问题。它在量子力学、信号处理、泛函分析等领域中得到了广泛的应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凉月松心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值