晶格振动和声子 2022.10.15

回顾

介绍了杜隆和能量均分的相同和差异

能量均分是以气体分子作为研究对象

而杜隆定理研究对象是固体,大部分是金属固体

固体和气体自由度是有差别的,这也导致了有不同样的比热

但是这两种能量均分定理,气体分子的还有固体的,在很大的温度范围之内,都是一个不随温度变化的值,大概是三倍的R,这么一个数值

这与我们后续,在20世纪之后,1900年之后,低温试验测得比热有很大的差别

还在当固体处于固体状态的时候,在外界的作用下,会在平衡位置附近作简谐运动,如果不做简谐运动,就不能保持固体的特性了,温度太高就融化了,甚至升华了,我们把平衡位置附近的运动,把他想象成一个simple harmonic potential ,这个是和一维无限深势阱有些类似的,比如说都在边界处它的势能接近于无穷,内部的形状是一个矩形,这个线性是从经典的部分过来的

经典理论是解决不了我们的这个比热变化的,在经典理论里面,这些好像都跟温度没有啥关系,

没有引出温度的路径,我们在上一学期的热力学与统计物理里面,讲能量均分定理的时候,有些运动只能用量子化来理解,从这方面来讲,需要把固体中的原子,因为外界热源引起的简谐运动,在量子的区间进行一个求解,来看一看,这个简谐势阱是量子作用下,能够产生什么样的能级

首先说明了,简谐运动对于原子来说,适用的范围,远离平衡位置自然就不可能了

我们可以得到量子形式的哈密顿算符

         

 我们对两组根进行检验,发现在这种情况下,有一组就被舍弃掉了

这样的话,我们就通过第一步,x在无穷大的时候,进行了讨论,我们发现了我们的解需要乘以收敛相,对我们的函数进行修饰,收敛相之后,对我们的函数进行进一步求解

如果波函数具有两部分的话,代入微分方程中

 我们就得到了关于h的二次微分方程,我们发现化简之后,关于h的二次微分方程

 不微分项前面是常系数

这种形式的微分方程,经过查表可以发现

这个方程的典型特点就是一次微分项前面会有x的系数,这样子的话,我们可以看到规定2n是一个常数 ,这种方程的求解是利用Hermite Polynomial就是用厄密多项式去求解

 它的形式就是一个多项式求和的形式

代入求解形式之后

 每一项都相同,这个方程就会有解,我们从前面已知厄密多项式,微分方程解的时候,我们就把厄密多项式代入这个微分方程中,带入微分方程中之后,我们就可以对方程中的每一个项之间的关系,进行求解,当然我们对每一项进行求解的时候,我们需要下一番功夫,需要把下标弄整齐

如果我们每一项都满足这个方程,就可以导出上面这个公式等于0

我们就可以把加和号去掉,这是一个充分条件

 在我们的这个厄密多项式里面,最关键的就是相邻几项之间的关系,未知的部分就是前面的系数

我们把厄密多项式代入微分方程中,未知的就是前面的系数,这样的话,我们就得到了,前后几项之间的关系,也就是说如果前后几项满足这样的关系,就可以满足这样的条间,这样的条间是使得微分方程成立的充分条件

这样的话,我们再来看微分方程求解,关系确实是比较复杂的,第一步我们先用趋近于无穷这一边界条间,在一维单元链里面,用了周期性边界条件,这边要求波函数要收敛,我们首先得到收敛系数,相当于设置了一个窗口,我们对方程进行进一步求救,用了类似于验算法这么一个求解的过程

先设处微分方程解的形似,然后再代入,我们通过微分方程直接看出它的解,再把解代入到微分方程中给,再求解出一维无限深势阱解的系数

确定了厄密多项式,我们就求解出了H,我们就相当于求解出了\phi


我们画出一个又一个能级

 有了能量我们可以算出K来,我们对能量更关心一些,没有对波函数进行完全求解,可以试一下对波函数进行求解,我们来看一下这个能量

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凉月松心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值