高斯定理的理解——工程电磁场 P2~P5

证明:静电场是无旋场

\oint_{s}\vec E \cdot d\vec l=0

根据斯托克斯公式上式等于

\int_S \nabla \times \vec E \cdot d \vec S=0

\nabla \times \vec E=0


电位的引入

由于静电场是无源场,我们可以得到\nabla \times \vec E=0

 又因为\nabla \times (\nabla \varphi )=0

再结合电场的物理意义,我们可以定义\vec E=-\nabla \varphi


功函数表达式的化简

原先功函数表达式 

W=\oint_{A}^{B}\vec E \cdot d\vec l=\oint_{A}^{B}-\nabla \varphi \cdot d \vec l=-\int_{\varphi_{A}}^{\varphi_{B}}d\varphi=\varphi_{A}-\varphi_{B}


 高斯定律的理解

不管是导体还是电解质,对于电场来说可以看作是一个又一个带电粒子

静电场中的导体

在受到电场作用的时候,此时导体的变化肯定是复杂的,并且会产生电流,此时就不再是静电场

(静电场需要满足 1.物理量不随时间变化 2.电荷没有运动

但是很快就会进入到平衡状态

此时满足四个条件:

1.导体内部电场等于0

2.导体内部是等位体,导体表面也是等位面

3.电荷分布在表面

4.导体表面上只有电场的法向分量(电场的法向分量足够大的时候,会逸出,从而放电)

静电场中的电介质

电介质与导体的区别:所有的粒子被束缚在原子核周围(限制空间)

电介质分为两种

1.无极性分子电介质 没有电场的时候,不显电性,但是分子的正负电荷中心是重合的

一旦受到电场,会产生极化,正负电荷中心被拉开,我们称之为位移极化

2.有极性分子电介质 虽然正负电荷中心不重合,但是由于热运动,仍然随机无规则分布,不显电性

此时我们施加电场,将会重新排布,我们称之为转向极化 


此时我们定义电极化强度 

\vec p=\lim_{\Delta v \to 0}\frac{\sum \vec P_{i}}{\Delta v}


极化之后

此时电介质被极化,空间的电场将会由两部分组成

第一部分原先的电场,第二部分电介质所产生的电场 

两者的合成我们称之为合成电场

 此时根据电偶极子模型

电介质所产生的电位

\varphi(\vec r)=\int_{V} \frac{\vec p (\vec r^{\prime})dV^{\prime} \cdot \vec e_{R}}{4 \pi \varepsilon_{0}R^{2}}

结合\nabla^{\prime}(\frac{1}{R})=\frac{\vec e_{R}}{R^{2}}

代入\varphi(\vec r)=\int_{V} \frac{\vec p (\vec r^{\prime})dV^{\prime} \cdot \vec e_{R}}{4 \pi \varepsilon_{0}R^{2}}

 \varphi(\vec r)=\frac{1}{4\pi \varepsilon_{0} }\int_{V} \vec p(\vec r^{\prime}) \nabla^{\prime} (\frac{1}{R})d v^{\prime}

结合公式\nabla \cdot (\frac{\vec p}{R}) =\vec p \cdot \nabla (\frac{1}{R})+\frac{1}{R}\nabla \cdot\vec p

变换一下形式可以得到\nabla^{\prime} \cdot (\frac{\vec p(\vec r^{\prime})}{R}) =\vec p(\vec r^{\prime}) \cdot \nabla^{\prime} (\frac{1}{R})+\frac{1}{R}\nabla^{\prime} \cdot\vec p(\vec r^{\prime})

代入\varphi(\vec r)=\frac{1}{4\pi \varepsilon_{0} }\int_{V} \vec p(\vec r^{\prime}) \nabla^{\prime} (\frac{1}{R})d v^{\prime}

可以得到

\varphi(\vec r)=\frac{1}{4\pi \varepsilon_{0} }\int_{V} \nabla^{\prime} \cdot (\frac{\vec p(\vec r^{\prime})}{R}) -\frac{1}{R}\nabla^{\prime} \cdot\vec p(\vec r^{\prime})d v^{\prime}=\frac{1}{4\pi \varepsilon_{0} }\int_{V} \nabla^{\prime} \cdot (\frac{\vec p(\vec r^{\prime})}{R}) d V^{\prime}-\frac{1}{4\pi \varepsilon_{0} }\int_{V}\frac{1}{R}\nabla^{\prime} \cdot\vec p(\vec r^{\prime})d V^{\prime}

 利用高斯公式

\frac{1}{4\pi \varepsilon_{0} }\int_{V} \nabla^{\prime} \cdot (\frac{\vec p(\vec r^{\prime})}{R}) d V^{\prime}=\frac{1}{4\pi \varepsilon_{0} }\int_{S} \frac{\vec p(\vec r^{\prime})}{R}\cdot \vec S

可以得到

\frac{1}{4\pi \varepsilon_{0} }\int_{V} \nabla^{\prime} \cdot (\frac{\vec p(\vec r^{\prime})}{R}) d V^{\prime}-\frac{1}{4\pi \varepsilon_{0} }\int_{V}\frac{1}{R}\nabla^{\prime} \cdot\vec p(\vec r^{\prime})d V^{\prime}=\frac{1}{4\pi \varepsilon_{0} }\int_{S} \frac{\vec p(\vec r^{\prime})}{R}\cdot d\vec S^{\prime}+\frac{1}{4\pi \varepsilon_{0} }\int_{V}\frac{1}{R}\nabla^{\prime} \cdot\vec p(\vec r^{\prime})d V^{\prime}

如果取\rho_{p}=-\nabla \cdot \vec p,\sigma_{p}=\vec p \cdot \vec e_{n}

可以得到

\frac{1}{4\pi \varepsilon_{0} }\int_{S} \frac{\vec p(\vec r^{\prime})}{R}\cdot \vec S+\frac{1}{4\pi \varepsilon_{0} }\int_{V}\frac{1}{R}\nabla^{\prime} \cdot\vec p(\vec r^{\prime})d V^{\prime}=\frac{1}{4 \pi \varepsilon_0} \int_S \frac{\sigma_{p} dS^{\prime}}{R}+\frac{1}{4 \pi \varepsilon_0} \int_S \frac{\rho_{p} dV^{\prime}}{R}

由此我们就可以把电介质产生的电位等效成体电荷和面电荷产生的

 此时我们引入各向同性和线性的电介质,进一步简化极化

使得电极化强度和电场无关,\vec p=X_{e}\varepsilon_{0}\vec E

E是合成电场的场强,此处只需要记得,关于为什么各向同性和线性的介质满足这个性质,暂时先不用管,当成一种模型记住


高斯定律的简化

\oint_{S}\vec E \cdot \vec S=\frac{1}{\varepsilon_{0}}\int_v (\rho_p+\rho) dv

\oint_S \varepsilon_0 \vec E \cdot d \vec S=\int_V \rho dV +\int_V (-\nabla \cdot \vec p)d V

结合高斯定律

\oint \varepsilon_0 \vec E \cdot d \vec S+\oint_S \vec p \cdot d \vec S=\int_{V} \rho dV

\oint (\varepsilon_0 \vec E + \vec p) \cdot d \vec S=\int_{V} \rho dV

我们引入电位移矢量 

\varepsilon_0 \vec E+\vec p=\vec D

化简得\oint \vec D \cdot d \vec S=\int_{V} \rho dV

\vec D=\varepsilon_0 \vec E+\vec p=\varepsilon_0 \vec E+X_e\varepsilon_0 \vec E=\varepsilon_0(1+X_e)\vec E

我们令\varepsilon=\varepsilon_0(1+X_e)\vec E,称为电介质的介质常数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凉月松心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值