时变电磁场 工程电磁场 P24

两个重要定律

首先是两个非常重要的定理

法拉第电磁感应定律完整形式:

\oint_l \vec E \cdot d \vec l =-\int _{S} \frac{\partial \vec B}{\partial t}\cdot d \vec S +\oint_l (\vec v \times \vec B) \cdot d \vec l

应用斯托克斯定律,我们可以得到

\nabla \times \vec E=-\frac{\partial \vec B}{\partial t} +\nabla \times (\vec v \times \vec B)

在静止媒质钟我们有

\nabla \times \vec E=-\frac{\partial \vec B}{\partial t}

全电流定律

\oint_l \vec H \cdot d \vec l=\oint_s (\vec J+\vec J_d)\cdot d\vec S

对于非恒定的电流,我们可以写成

\oint_l \vec H \cdot d\vec l=\int_S \vec J \cdot d \vec S +\int_S \frac{\partial \vec D}{\partial t} \cdot d \vec S

相应的微分形式

\nabla \times \vec H=\vec J +\frac{\partial \vec D}{\partial t} 

电磁感应定律与全电流定律构成了电磁场理论的基石


这两个定律说明

变化的电场可以产生磁场

变化的磁场也可以产生电场

电场和磁场就不再相互孤立,相互结合在一起,构成了统一的电磁场

原因和效果在时变电磁场里面就很难区分开来

电场和磁场互为因果关系,作为一个整体,在时变电磁场里面就要看作一个整体,不再能够孤立的去看问题

交织在一起,就可以把场源的能量传递出来,在真空中以光速进行传播


电磁场的基本方程组以及边界面上的衔接条件

我们首先看电磁场的基本方程组

积分形式

\left\{ \begin{aligned} \oint_l \vec E \cdot d\vec l =-\int_S \frac{\partial \vec B}{\partial t} \cdot d\vec S \\ \oint_l \vec H \cdot d\vec l=\int_S \vec J \cdot d \vec S +\int_S \frac{\partial \vec D}{\partial t} \cdot d \vec S \\ \oint_S \vec B \cdot d \vec S=0 \\ \oint_S \vec D \cdot d \vec S =\int_v \rho dv \\ \end{aligned} \right.

 微分形式

\left\{ \begin{aligned} \nabla \times \vec E =-\frac{\partial \vec B}{\partial t} \\ \nabla \times \vec H =\vec J +\frac{\partial \vec D }{\partial t} \\ \nabla \times \vec B=0 \\ \nabla \cdot \vec D =\rho\\ \end{aligned} \right.

我们要注意这两个方程是非限定的形式

没有反应媒质的特性,如果写出了对应的特性,才可以称之为构成方程

比如各向同性的线性媒质

\begin{aligned} \vec B =\mu \vec H \\ \vec J =\Gamma \vec E \\ \vec D =\varepsilon \vec E \end{aligned}

我们称之为辅助方程

这两组方程有一个很重要的特征,与坐标系选取无关(说明这个是无坐标系形式)


下面讨论物理含义

电磁场建立起来,我们撤掉电源

我们这样的变化的电磁场在空间仍然存在

这个就是所谓的电磁波


分界面上的衔接条件

                                                                   \begin{aligned} D_{2n}-D_{1n}=\delta \\ B_{2n}=B_{1n} \\ \vec E_{2t}=\vec E_{1t} \\ H_{2t}-H_{1t}=K \\ \end{aligned}

我们称之为时变电磁场的衔接条件

如果K=0,\sigma=0

我们就有

\frac{tan(\alpha_1)}{tan(\alpha_2)}=\frac{\varepsilon_1}{\varepsilon_2}

\frac{tan(\beta_1)}{tan(\beta_2)}=\frac{\mu_1}{\mu_2}


在理想导体边界上的衔接条件

\vec J=\Gamma \vec E

理想导体内部\vec E=0

没有电场,磁场,什么都没有

但是理想导体对外面介质的电磁场有影响,是通过表面进行作用的

在理想导体表面分布一层自由电荷

D_n =\sigma

B_n=0,E_{2t}=0

H_t =K

在时变电场里面,电场强度分量和表面垂直

磁场强度一定和表面一定是相切的,而且和电流之间的关系是符合右手螺旋定则的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凉月松心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值