低损耗介质中的波和良导体中的波

低损耗介质中的波

\frac{\gamma}{\mu \varepsilon}<<1

推出

\sqrt{1+(\frac{\gamma}{\omega \varepsilon})^2} \approx 1+\frac{1}{2} (\frac{\gamma}{\mu \varepsilon})^{2}

我们得到

\alpha \approx \frac{\gamma}{2} \sqrt{\frac{\mu}{\varepsilon}}

\beta =\omega \sqrt{\mu \varepsilon}

Z_0 \approx \sqrt{\frac{\mu}{\varepsilon}}近似成为实数

说明电场和磁场在空间同一点处是同相的

说明色散效应可以忽略不计

在这两个特征上,低损耗介质和理想介质是相近的

我们说衰减仍然是存在的,经过一段时间的传输,振幅都会减小

我们再看另外一种,良导体中的波

良导体中的波

\frac{\gamma}{\mu \varepsilon}>>1

我们得到

\sqrt{1+(\frac{\gamma}{\omega \varepsilon})^2} \approx (\frac{\gamma}{\mu \varepsilon})

Z_0=\sqrt{\frac{\mu \varepsilon}{\gamma}} \angle 45

1.  \alpha比较大,在良导体中,衰减的比较快

2.  波阻抗是一个复数,良导体中某一点的电场强度比磁场强度要超前45度

由于\gamma很大,我们的Z_0很小

良导体的电磁波是以磁场为主要分量,电场分量占的总的电磁分量非常少

磁场分量由传导电流产生,传导电流很大,良导体中的电磁波主要以磁场分量为主

3. v=\frac{\omega}{\beta},比在理想介质中传播的慢得多


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凉月松心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值