- 博客(8)
- 收藏
- 关注
原创 1008 数组元素循环右移问题 (20分)
1008 数组元素循环右移问题 (20分) 输入格式: 每个输入包含一个测试用例,第1行输入N(1≤N≤100)和M(≥0);第2行输入N个整数,之间用空格分隔。 输出格式: 在一行中输出循环右移M位以后的整数序列,之间用空格分隔,序列结尾不能有多余空格。 输入样例: 6 2 1 2 3 4 5 6 输出样例: 5 6 1 2 3 4 代码如下 #include<stdio.h> int main() { int m,n,i; char a[101],s[101];
2021-01-19 15:32:15 132
原创 1007 素数对猜想 (20分)
1007 素数对猜想 (20分) 分析一下题目: 就是给出一个数,比如样例中的20,然后找出20以内的素数,2 3 5 7 11 13 17 19; 2个相差为2的素数就是一个素数对,也就是3和5,5和7,11和13,17和19,所以是4对; 步骤: (1)找出范围内的素数,将他们存到一个数组里 (2)利用循环判断相邻的2个,大的减小的是否为2 代码如下 #include<stdio.h> int f(long int i); int main() { long int n,k=0,i
2021-01-16 13:59:16 93
原创 1005 继续(3n+1)猜想 (25分)
1005 继续(3n+1)猜想 (25分) 卡拉兹(Callatz)猜想已经在1001中给出了描述。在这个题目里,情况稍微有些复杂。 当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数。例如对 n=3 进行验证的时候,我们需要计算 3、5、8、4、2、1,则当我们对 n=5、8、4、2 进行验证的时候,就可以直接判定卡拉兹猜想的真伪,而不需要重复计算,因为这 4 个数已经在验证3的时候遇到过了,我们称 5、8、4、2 是被 3“覆盖”的数。我们称一个数列中的某个数 n 为“关键
2021-01-16 10:22:08 80
原创 1016 部分A+B (15分)
1016 部分A+B (15分) 正整数 A 的“D A (为 1 位整数)部分”定义为由 A 中所有 D A 组成的新整数 P A 。例如:给定 A=3862767,D A =6,则 A 的“6 部分”P A 是 66,因为 A 中有 2 个 6。 现给定 A、D A 、B、D B ,请编写程序计算 P A +P B 。 输入格式: 输入在一行中依次给出 A、D A 、B、D B ,中间以空格分隔,其中 0<
2021-01-15 23:19:42 123
原创 1006 换个格式输出整数 (15分)
1006 换个格式输出整数 (15分) 让我们用字母 B 来表示“百”、字母 S 表示“十”,用 12…n 来表示不为零的个位数字 n(<10),换个格式来输出任一个不超过 3 位的正整数。例如 234 应该被输出为 BBSSS1234,因为它有 2 个“百”、3 个“十”、以及个位的 4。 输入格式: 每个测试输入包含 1 个测试用例,给出正整数 n(<1000)。 输出格式: 每个测试用例的输出占一行,用规定的格式输出 n。 输入样例 1: 234 输出样例 1: BBSSS1234 输入样
2021-01-15 19:27:33 117
原创 1004 成绩排名 (20分)
1004 成绩排名 (20分) 读入 n(>0)名学生的姓名、学号、成绩,分别输出成绩最高和成绩最低学生的姓名和学号。 输入格式: 每个测试输入包含 1 个测试用例,格式为 第 1 行:正整数 n 第 2 行:第 1 个学生的姓名 学号 成绩 第 3 行:第 2 个学生的姓名 学号 成绩 … … … 第 n+1 行:第 n 个学生的姓名 学号 成绩 其中姓名和学号均为不超过 10 个字符的字符串,成绩为 0 到 100 之间的一个整数,这里保证在一组测试用例中没有两个学生的成绩是相同的。 输出格式:
2021-01-14 23:27:49 153
原创 1002 写出这个数 (20分)
1002 写出这个数 (20分) 读入一个正整数 n,计算其各位数字之和,用汉语拼音写出和的每一位数字。 输入格式: 每个测试输入包含 1 个测试用例,即给出自然数 n 的值。这里保证 n 小于 10 100 。 输出格式: 在一行内输出 n 的各位数字之和的每一位,拼音数字间有 1 空格,但一行中最后一个拼音数字后没有空格。 输入样例: 1234567890987654321123456789 输出样例: yi san wu 分析一下题目: (1)除10取余,再相加,得出和sum (2)sum再除
2021-01-14 22:40:34 86
原创 1001 害死人不偿命的(3n+1)猜想 (15分)
1001 害死人不偿命的(3n+1)猜想 (15分) 1001 害死人不偿命的(3n+1)猜想 (15分) 卡拉兹(Callatz)猜想: 对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界
2021-01-14 12:51:25 129
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人